?2?y2?于是,fY(y)?f1(y)?f2(y)???e,y?0.
新疆财经大学数学考研辅导班教学资料 ?0,其他?
2习题3-1
2.箱子装有100件产品,其中一、二、三等品分别为80件,10件,10件,现从中随即抽取一件,记
?1,若抽到一等品?1,若抽到二等品 X2=?,试求随即变量(X1,X2)的分布律. X1??0,其他0,其他??解:显然(X1,X2)的各取值数对为:?0,0?,?0,1?,?1,0?,?1,1?.
11C10C10P?X1?0,X2?0??1?0.1;P?X1?0,X2?1??1?0.1;
C100C1001C80P?X1?1,X2?0??1?0.8;P?X1?1,X2?1??0.
C100故,(X1,X2)~????0,0??0.1?0,1??1,0??1,1??0.10.8?. ?0?3.将一枚均匀硬币抛掷3次,以X记正面出现的次数,以Y记正面出现与反面出现次数之差的绝对值,求随即变量(X,Y)的分布律.
解:设Z表示“反面向上的次数”,则Z的取值为:0,1,2,3,X的取值为:0,1,2,3,且X?Z?3,
?1?X,Z~B?3,?,又Y?X?Z.故Y的取值只可能为:1,3.
?2?于是,(X,Y)的取值数对为:?0,1?,?0,3?,?1,1?,?1,3?,?2,1?,?2,3?,?3,1?,?3,3?. 因为X?Z?3,所以显然有:
P?X?0,Y?1??P?X?3,Y?1??P?X?2,Y?3??P?X?1,Y?3??0.
1?1??1?P?X?0,Y?3??P?X?0,Z?3??P?X?0??C?????;
8?2??2?030331?1??1?P?X?1,Y?1??P?X?1,Z?2??P?X?1??C3?????; 8?2??2??1??1?3P?X?2,Y?1??P?X?2,Z?1??P?X?2??C?????;
?2??2?82322 11
P?X?3,Y?3??P?X?0,Z?0??P?X?0????0,1??X,Y?~??0?
?0,3??1,1??1,3?183801. 8 ?新疆财经大学数学考研辅导班教学资料2,1??2,3??3,1??3,3??31?.
?0088??k(6?x?y),0?x?2,2?y?44.设随即变量(X,Y)的概率密度为f(x,y)?? ,0,其他?(1)确定常数k;(2)求P?X?1,Y?3?; #(3)求P?X?1.5?;#(4)求P?X?Y?4?.
????解:(1)因为
??????f(x,y)dxdy??dx?k?6?x?y?dy?k??6?2x?dx?8k?1, 所以k?020y2421. 8(2)P?X?1,Y?3??dx1?01?6?x?y?dy ?82o31?5?1?71?3????6?x???dx??????. 80?2?8?22?8(3)P?X?1.5??1.541x1.5????????f(x,y)dydx
0y1.5?1?1?????6?x?y?dy?dx???2?6?x??6?dx
8800?2?x1?81.527. ??6?2xdx??032y(4)P?X?Y?4??P??X,Y??D????f(x,y)dxdy
D0?1dx?80224?x?6?x??2?x??dx1???????6?x?ydy?6?x2?x?????
22x80?2?12??12?8x?x2dx?. 1603???Ae?(2x?3y),x?0,y?05.设随即变量(X,Y)的概率密度为f(x,y)??求常数A ,0,其他?的随即变量(X,Y)的分布函数F(x,y).
????y解:因为
??????????f(x,y)dxdy?1,
????????0xA?1?2x??1?3y??2x?3y??1, 而??f(x,y)dxdy?A?edx?edy?A??e????e?6?2?0?3?0????00
12
故A?6.
当x?0且y?0时,F(x,y)?P?X?x,Y?y?
xy?2x新疆财经大学数学考研辅导班教学资料
?6?e??dx?e?3ydy?1?e?2x1?e?3y.
???????1?e?2x1?e?3y,x?0,y?0故F(x,y)??.
0,其他?????习题3-2
1.完成下列表格:
Y x1 x2 p(j2) 解:因为p(1)iy 0.1 y y 0.2 pi(1 0.4 0.2 0.2 ??pij,pj?1?(2)j??pij,所以有:
i?1?(1)(1)?1?p1(1)?1?0.4?0.6; P?X?x1,Y?y2??p1?p11?p13?0.1;p2(1)P?X?x2,Y?y3??p2?p21?p22?0.2;p1(2)?p11?p21?0.3; (2)(2)p2?p12?p22?0.3;p3?p13?p23?0.4.
?cx2y,x2?y?14.设二维随机变量(X,Y)的概率密度为f(x,y)??(1)试确定常数c;(2)求边缘概率,其他?0,密度.
????112y解:(1)因为
1????4??f(x,y)dxdy??dx?cx?1x2ydy
y?x2??1,1?o?1,1?y?1??cx2?1211?x4. dx?c?1,所以c?4221??x?1212?21??xydy,?1?x?1?x21?x4,?1?x?1(2)fX(x)??f(x,y)dy??24; ??8x????0,其他?0,其他????y21?752?xydx,0?y?1?y2,0?y?1fY(y)??f(x,y)dx???4??2.
?y?????0,其他0,其他???
习题3-4
13
1.设随机变量X与Y相互独立,下表列出了二维随机变量(X,Y)的联合分布律及关于X与Y的边缘分布律的
新疆财经大学数学考研辅导班教学资料 部分数值,试将其余数值填入表中的空白处 Y y1 y2 y3 pi(1) x ?1? ?? ?24? 1 8?1??? ?12??1??? ?4??1??? ?4??3??? ?4? 1 x 1 81 6?3??? ?8? p(j2) ?1??? ?2??1??? ?3?解:因为X与Y相互独立,所以pij?pi(1)p(j2).
11p(1)8?3;p(1)?1?p(1)?1;p(2)?p12?8?1; p2?(21?1224p12)14p1(1)12461p111(2)8?1; p11?p1(1)p1(2)???;p2?12?6424p1(1)124111111?2?(2)(2)p3?1?p1(2)?p2?1???;p13?p1(1)p3???;
6234312313311(1)(2)(1)(2)p22?p2p2???; p23?p2p3???.
428434??1,1?2.设随机变量X与Y相互独立且具有相同的分布,X的分布律为X~?11?,求P?X?Y?及P?X?Y?.
?,?2??2??1,1?解:由题意,Y~?11?,且pij?pi(1)p(j2)?i,j?1,2?,可求得?X,Y?的联合分布列如下:
?,?2??2
Y ?1 pi(1) 1212?1 1 pj (2)141412141412于是,P?X?Y??P?X??1,Y??1??P?X?1,Y?1??111??. 442P?X?Y??P?X?1,Y??1??1. 44.设随机变量(X,Y)的联合密度为f(x,y)??
?4xy,0?x?1,0?y?1,问X与Y是否独立?
其他.?0,14
?1?4xydy,0?x?1?2x,0?x?1解:因为fX(x)??f(x,y)dy???, ??0新疆财经大学数学考研辅导班教学资料 0,其他????0,其他????1?4xydx,0?y?1?2y,0?y?1, fY(y)??f(x,y)dx?????00,其他????0,其他???显然f(x,y)?fX(x)?fY(y),故随机变量X与Y是独立的.
5.设X与Y是两个相互独立的随机变量,X在?0,1?上服从均匀分布,Y的概率密度为
y?1?2?fY(y)??2e,??0,y?0, (1)求X和Y的联合概率密度;(2)设含有a的二次方程为a2?2Xa?Y?0,试
y?0.求a有实根的概率.
解:(1)因为X~U?0,1?,所以X的概率密度函数为fX(x)??由于X与Y是两个相互独立的随机变量,则
y?1?2?f(x,y)?fX(x)?fY(y)??2e,0?x?1,y?0.
?0,其他??1,0?x?1.
?0,其他#(2)要使a的二次方程为a?2Xa?Y?0有实根,只要??X?Y?0.
22yyx1??1?2PX?Y?0??dx?edy???1?e2?2000??2?1x22??dx ??2y?x2?1,1?xx?1?x??x1022?e?e??1??e2dx?1?2???dx??dx?
0??2????2????22ox?1?1?2????1????0???1?2??0.8413?0.5??0.1445.
习题4-1
1.甲,乙两台机器一天中出现次品的概率分布分别为X~??0.4?若两台机器的日产量相同,问哪台机器较好?
解:平均每日次品较少者为好,即数学期望较少者为好.
显然,E?X??1?0.3?2?0.2?3?0.1?1,E?Y??1?0.5?2?0.2?0.9, 因为E?X??E?Y?,所以可以认为机器乙的平均日次品量较少,故较好.
?0123?123??0???;Y~???0.30.20.1??0.30.50.20?15
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库概率数学课后习题1-4章答案(3)在线全文阅读。
相关推荐: