摘要
MATLAB是一个包含大量计算算法的集合。其拥有600多个工程中要用到的数学运算函数,可以方便的实现用户所需的各种计算功能。函数中所使用的算法都是科研和工程计算中的最新研究成果,而前经过了各种优化和容错处理。在通常情况下,可以用它来代替底层编程语言,如C和C++ 。在计算要求相同的情况下,使用MATLAB的编程工作量会大大减少。MATLAB的这些函数集包括从最简单最基本的函数到诸如矩阵,特征向量、快速傅立叶变换的复杂函数。函数所能解决的问题其大致包括矩阵运算和线性方程组的求解、微分方程及偏微分方程的组的求解、符号运算、傅立叶变换和数据的统计分析、工程中的优化问题、稀疏矩阵运算、复数的各种运算、三角函数和其他初等数学运算、多维数组操作以及建模动态仿真等。
此次课程设计就是利用MATLAB对一单位反馈系统进行滞后-超前校正。通过运用MATLAB的相关功能,绘制系统校正前后的伯德图、根轨迹和阶跃响应曲线,,能够利用不同的分析法对给定系统进行性能分析,能根据不同的系统性能指标要求进行合理的系统设计,并调试满足系统的指标。学会使用MATLAB语言及Simulink动态仿真工具进行系统仿真与调试。
关键字:超前-滞后校正 MATLAB 仿真
1.课程设计应达到的目的
1. 掌握自动控制原理的时域分析法,根轨迹法,频域分析法,以及各种补偿(校正)装置的作用及用法,能够利用不同的分析法对给定系统进行性能分析,能根据不同的系统性能指标要求进行合理的系统设计,并调试满足系统的指标。 2. 学会使用MATLAB语言及Simulink动态仿真工具进行系统仿真与调试。
2.课程设计题目及要求 题目:
已知单位负反馈系统的开环传递函数,
Kv?10s?1G(S)?K0S(S?1)(S?2)试用频率法设计串
联滞后——超前校正装置,使之满足在单位斜坡作用下,系统的速度误差系数
,系统的相角裕量??450,校正后的剪切频率?C?1.5rads。
设计要求:
1. 首先, 根据给定的性能指标选择合适的校正方式对原系统进行校正,使其满足工作要求。要求程序执行的结果中有校正装置传递函数和校正后系统开环传递函数,校正装置的参数T,?等的值。
2.. 利用MATLAB函数求出校正前与校正后系统的特征根,并判断其系统
是否稳定,为什么? 3. 利用MATLAB作出系统校正前与校正后的单位脉冲响应曲线,单位阶跃响应曲线,单位斜坡响应曲线,分析这三种曲线的关系。求出系统校正前与校正
后的动态性能指标σ%、tr、tp、ts以及稳态误差的值,并分析其有何变化。 4. 绘制系统校正前与校正后的根轨迹图,并求其分离点、汇合点及与虚轴交点的坐标和相应点的增益K值,得出系统稳定时增益K的变化范围。绘制系统校正前与校正后的Nyquist图,判断系统的稳定性,并说明理由。
5. 绘制系统校正前与校正后的Bode图,计算系统的幅值裕量,相位裕量,幅值穿越频率和相位穿越频率。判断系统的稳定性,并说明理由。
??3. 用MATLAB进行控制系统的滞后-超前校正设计 3.1滞后-超前校正设计目的和原理
目的:所谓校正就是在系统不可变部分的基础上,加入适当的校正元部件,使系统满足给定的性能指标。校正方案主要有串联校正、并联校正、反馈校正和前馈校正。确定校正装置的结构和参数的方法主要有两类:分析法和综合法。分析法是针对被校正系统的性能和给定的性能指标,首先选择合适的校正环节的结构,然后用校正方法确定校正环节的参数。在用分析法进行串联校正时,校正环节的结构通常采用超前校正、滞后校正和滞后-超前校正这三种类型。超前校正通常可以改善控制系统的快速性和超调量,但增加了带宽,而滞后校正可以改善超调量及相对稳定度,但往往会因带宽减小而使快速性下降。滞后-超前校正兼用两者优点,并在结构设计时设法限制它们的缺点。
原理:滞后-超前校正RC网络电路图如图1所示。
图1 滞后-超前校正RC网络
下面推导它的传递函数:
?
Gc?s??M?s?E(s)R2??R111sC2sC11?R2?1sC2R1?sC1?1?R1C1s??1?R2C2s?21??R1C1?R2C2?R1C2?s?R1C1R2C2s令: 则:
T1?R1C1,T2?R2C2,T1? ??T2?R1C1?R2C2?R1C2,??1Gc?s???1?T1s??1?T2s??T1??1????s???1??T2s??其中T1为超前部分的参数,T2为滞后部分的参数。
滞后-超前校正的频域设计实际是超前校正和滞后校正频域法设计的综合,基本方法是利用滞后校正将系统校正后的穿越频率调整到超前部分的最大相角处的频率。具体方法是先合理地选择截止频率?c,先设计滞后校正部分,再根据已经选定的?设计超前部分。
应用频率法确定滞后超前校正参数的步骤: 1、根据稳态性能指标,绘制未校正系统的伯德图; 2、选择校正后的截止频率?c; 3、确定校正参数?; 4、确定滞后部分的参数T2; 5、确定超前部分的参数T1;
6、将滞后部分和超前部分的传递函数组合在一起,即得滞后-超前校正的传递函数;
7、绘制校正后的伯德图,检验性能指标。
3.2 滞后-超前校正的设计过程
(1).根据初始条件,调整开环传递函数:
G?s??0.5Ks?1?s??1?0.5s??1 当系统的静态速度误差系数Kv?10S时,0.5K?Kv则
K?20s?1
满足初始条件的最小K值时的开环传递函数为
G?s??10s?1?s??1?0.5s?(2).用MATLAB求校正前系统的幅值裕量和相位裕量
用命令margin(G)可以绘制出G的伯德图,并标出幅值裕量、相位裕量和对应的频率。用函数[kg,r,wg,wc]=margin(G)可以求出G的幅值裕量、相位裕量和幅值穿越频率。 程序:
num=[10]; den=[0.5,1.5,1,0]; G=tf(num,den); margin(G)
[kg,r,wg,wc]=margin(G)
得到的幅值裕量和相位裕量如图2所示。
图2 校正前系统的幅值裕量和相位裕量
行结果: kg=0.3000 r=-28.0814
wg=1.4142 wc=2.4253
即幅值裕量h?20lg0.3??10.5dB,相位裕量?=-28.0814。
o
(3).选择校正后的截止频率?c,确定校正参数?、T2和T1
若性能指标中对系统的快速性未提明确要求时,一般对应?G?j????180?的频率作为?c。
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库自动控制原理MATLAB课程设计 金陵科技学院在线全文阅读。
相关推荐: