(3)方块左边的两张牌中至少有一张是红桃。 (4)红桃右边的两张牌中也有一张是红桃。 请将这三张牌按顺序写出来。 7. 将偶数排成下表:
A B C D E
2 4 6 8
16 14 12 10
18 20 22 24
32 30 28 26 ……
那么,1998这个数在哪个字母下面?
8. 在下图的14个方格中,各填上一个整数,如果任何相连的三个方格中填的数之和都是20,已知第4格填9,第12格填7,那么,第8个格子中应填什么数?
97
9. 将自然数1,2,3……15,这15个自然数分成两组数A和B。求证:A或者B中,必有两个不同的数的和为完全平方数。
10. 把一张纸剪成6块,从中任取几块,将每一块剪成6块,再任取几块,又将每一块剪成6块,如此剪下去,问:经过有限次后,能否恰好剪成1999块?说明理由。
试题二答案 1. (1)(294.4-19.2×6)÷(6+8)
=179.2÷14 =12.8
(2)12.5×0.76×0.4×8×2.5 =(12.5×8)×(0.4×2.5)×0.76 =100×1×0.76=76 2.
(1)解:二数相乘,若被乘数增加12,乘数不变,积增加60,若被乘数不变,乘数增加12,积增加144,那么原来的积是什么?
设原题为a×b
据题意:(a+12)×b=a×b+60 可得:12×b=60 b=5 同样:(b+12)×a=a×b+144
从而:12×a=144 a=12 ?原来的积为:12×5=60
(2)解:1990年6月1日是星期五,那么,2000年10月1日是星期几?
一年365天,十年加上1992,1996,2000三个闰年的3天,再加上六、七、八、九月的天数,还有10月1日,共
3650+3+30+31+31+30+1 =3776
3776÷7=539……3
1990年6月1日星期五,所以,2000年10月1日是星期日。 3. 一角钱6张,伍角钱2张,一元钱8张,可以组成多少种不同的币值?
答:所有的钱共有9元6角。
最小的币值是一角,而有6张,与伍角可以组成一角、二角……九角、一元的所有整角钱数。所以,可以组成从一角到九元六角的所有整角,共96种不同钱数。
4. 现将12枚棋子,放在图中的20个方格中,每格最多放1枚棋子。要求每行每列所放的棋子数的和都是偶数,应该怎样放,在图上表示出来。
图解(○)代表棋子):
答案不唯一。
5. 有一栋居民楼,每家都订了2份不同的报纸,该居民楼共订了三种报纸,其中,中国电视报34份,北京晚报30份,参考消息22份,那么订北京晚报和参考消息的共有多少家?
解:每家订2份不同报纸,而共订了 34+30+22=86(份) 所以,共有43家。
订中国电视报有34家,那么,设订此报的有9家。
而不订中国电视报的人家,必然订的是北京晚报和参考消息。 所以,订北京晚报和参考消息的共有9家。 6. 在桌子上有三张扑克牌,排成一行,我们已经知道:
(1)k右边的两张牌中至少有一张是A。
(2)A左边的两张牌中也有一张是A。 (3)方块左边的两张牌中至少有一张是红桃。 (4)红桃右边的两张牌中也有一张是红桃。 请将这三张牌按顺序写出来。
解:设桌上的三张牌为甲、乙、丙,由条件(1)k右边有两张牌,所以,甲必是k,且乙、丙中至少有一张是A。
由条件(2),A的左边还有A,那么,必然乙、丙都是A。
同样,可推出,由(4)知:甲为红桃。由(3)得丙为方块,再由(4)即得乙是红桃。 ?三张牌的顺次为:红桃k,红桃A,方块A。 7. 将偶数排成下表:
A B C D E
2 4 6 8
16 14 12 10
18 20 22 24
32 30 28 26 ……
那么,1998这个数在哪个字母下面?
解:由图表看出:偶数依次排列,每8个偶数一组依次按B、C、D、E、D、C、B、A列顺序排。 看A列,E列得到排列顺序是以16为周期来循环的。 1998÷16=124……14
所以,1998与14同列在B列。
8. 在下图的14个方格中,各填上一个整数,如果任何相连的三个方格中填的数之和都是20,已知第4格填9,第12格填7,那么,第8个格子中应填什么数?
97
解:设a、b、c、d是任连续四格中的数,据题意: a+b+c=20=b+c+d ?a=d
那么,第1,4,7,10,13格中的数相同,都是9。 同样,第3,6,9,12格中的数都是7。
那么,第2,5,8,11,14格中的数相同,都应为: 20-9-7=4
9. 将自然数1,2,3……15,这15个自然数分成两组数A和B。求证:A或者B中,必有两个不同的数的和为完全平方数。
解:假设A、B两组中都没有不同的两个数的和是完全平方数,我们说明是不可能的。
不妨设1在A组
1+3=4=2,1+15=16=4 ?3,15都在B组 3+6=9=3 6须在A组 6+10=16=4
又得到10应在B组,这时,B组已有两数和为完全平方数了。 10+15=25=5
所以,在A组或B组中,必有两个不相同的数的和为完全平方数。
10. 把一张纸剪成6块,从中任取几块,将每一又块剪成6块,再任取几块,又将每一块剪成6块,如此剪下去,问:经过有限次后,能否恰好剪成1999块?说明理由。
解:设剪成6块后,第一次从中取出k1块,将每一块剪成6块,则多出了5k1块,这时,共有: 6+5k1=1+5+5k1 =5(k1+1)+1(块)
第二次从中又取出k2块,每块剪成6块,增加了5k2块,这时,共有 6+5k1+5k2
=5(k1+k2+1)+1(块)
以此类推,第n次取kn块,剪成6块后共有 5(k1+k2+……+kn+1)+1(块)
因此,每次剪完后,纸的总数都是(5k+1)的自然数(即除以5余1) 1999÷5=399……4
所以,不可能得到1999张纸块。
22222五、六年级数学竞赛模拟试卷及答案(三)
1. (1)如果a?b表示(a-2)×b,例如3?4?(3?2)?4?4,那么,当a?5?30时,求a的值。
(2)a、b、c是1~9中的不同数码,用它们组成的六个没有重复数字的三位数之和是(a+b+c)的
多少倍?
2. (1)大、小两个长方形对应边的距离是5厘米,如图,两个长方形之间部分的面积是1000平方厘米,求:大长方形的周长。
5
(2)口袋中装有10种不同颜色的珠子,每种都是100个,要想保证从袋中摸出3种不同颜色的珠子,并且每种至少10个,那么至少要摸出多少个珠子。
3. 把一根长1米的圆柱形铁棒锯成4段,每段仍是圆柱体,表面积比原来增加了24平方厘米,求,这根铁棒的体积多少立方分米。
4. 恰有两位数字相同的三位数共有多少个?
5. 杨静新买的手表比家里的挂钟每小时快30秒,家里的挂钟每小时比标准时间慢30秒。杨静的手表是快还是慢?一昼夜差多少秒?
6. 将9张面积都是9的图形,放在面积为45的桌面上,(不能超出桌面),能否使其中任意两个图形相互重叠的面积都小于1?
7. 甲、乙两人同时从山脚开始爬山,到达山顶后,就立即下山,他们两人下山的速度都是各自上山速度的2倍。甲到山顶时,乙距山顶还有400米,甲回到山脚时,乙刚好下到半山腰。求:山脚到山顶的距离。
8. 有三块草地,面积分别为4亩、8亩和10亩,草地上的草一样厚,而且生长的一样快,若第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周。问:第三块草地可供50头牛吃几周?
9. 某工厂生产一种圆盘形玩具。在圆盘正面的圆周上均匀分布安装10个小球,其中3个为红球,7个为白球,如图所示,若两个圆盘都正面朝上,可以圆心对圆心,红球对红球,白球对白球叠放在一起,就算同一种规格。问:这类玩具一共可以有多少种不同的规格?
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库五年级数学竞赛模拟试卷及答案(一) - 2(2)在线全文阅读。
相关推荐: