和fib(n-2),又必须先计算fib(n-3)和fib(n-4)。依次类推,直至计算fib(1)和fib(0),分别能立即得到结果1和0。在递推阶段,必须要有终止递归的情况。例如在函数fib中,当n为1和0的情况。
在回归阶段,当获得最简单情况的解后,逐级返回,依次得到稍复杂问题的解,例如得到fib(1)和fib(0)后,返回得到fib(2)的结果,……,在得到了fib(n-1)和fib(n-2)的结果后,返回得到fib(n)的结果。
在编写递归函数时要注意,函数中的局部变量和参数知识局限于当前调用层,当递推进入“简单问题”层时,原来层次上的参数和局部变量便被隐蔽起来。在一系列“简单问题”层,它们各有自己的参数和局部变量。
由于递归引起一系列的函数调用,并且可能会有一系列的重复计算,递归算法的执行效率相对较低。当某个递归算法能较方便地转换成递推算法时,通常按递推算法编写程序。例如上例计算斐波那契数列的第n项的函数fib(n)应采用递推算法,即从斐波那契数列的前两项出发,逐次由前两项计算出下一项,直至计算出要求的第n项。
【问题】 组合问题
问题描述:找出从自然数1、2、……、n中任取r个数的所有组合。例如n=5,r=3的所有组合为: (1)5、4、3 (2)5、4、2 (3)5、4、1
(4)5、3、2 (5)5、3、1 (6)5、2、1
(7)4、3、2 (8)4、3、1 (9)4、2、1
(10)3、2、1
分析所列的10个组合,可以采用这样的递归思想来考虑求组合函数的算法。设函数为void comb(int m,int k)为找出从自然数1、2、……、m中任取k个数的所有组合。当组合的第一个数字选定时,其后的数字是从余下的m-1个数中取k-1数的组合。这就将求m个数中取k个数的组合问题转化成求m-1个数中取k-1个数的组合问题。设函数引入工作数组a[ ]存放求出的组合的数字,约定函数将确定的k个数字组合的第一个数字放在a[k]中,当一个组合求出后,才将a[ ]中的一个组合输出。第一个数可以是m、m-1、……、k,函数将确定组合的第一个数字放入数组后,有两种可能的选择,因还未去顶组合的其余元素,继续递归去确定;或因已确定了组合的全部元素,输出这个组合。细节见以下程序中的函数comb。
【程序】
# include
# define MAXN 100
int a[MAXN];
void comb(int m,int k)
{ int i,j;
for (i=m;i>=k;i--)
{ a[k]=i;
if (k>1)
comb(i-1,k-1); else
{ for (j=a[0];j>0;j--)
printf(“M”,a[j]);
printf(“\\n”); }
}
}
void main()
{ a[0]=3;
comb(5,3); }
【问题】 背包问题
问题描述:有不同价值、不同重量的物品n件,求从这n件物品中选取一部分物品的选择方案,使选中物品的总重量不超过指定的限制重量,但选中物品的价值之和最大。
设n件物品的重量分别为w0、w1、…、wn-1,物品的价值分别为v0、v1、…、vn-1。采用递归寻找物品的选择方案。设前面已有了多种选择的方案,并保留了其中总价值最大的方案于数组option[ ],该方案的总价值存于变量maxv。当前正在考察新方案,其物品选择情况保存于数组cop[ ]。假定当前方案已考虑了前i-1件物品,现在要考虑第i件物品;当前方案已包含的物品的重量之和为tw;至此,若其余物品都选择是可能的话,本方案能达到的总价值的期望值为tv。算法引入tv是当一旦当前方案的总价值的期望值也小于前面方案的总价值maxv时,继续考察当前方案变成无意义的工作,应终止当前方案,立即去考察下一个方案。因为当方案的总价值不比maxv大时,该方案不会被再考察,这同时保证函数后找到的方案一定会比前面的方案更好。
对于第i件物品的选择考虑有两种可能:
(1) 考虑物品i被选择,这种可能性仅当包含它不会超过方案总重量限制时才是可行的。选中后,继续递归去考虑其余物品的选择。
(2) 考虑物品i不被选择,这种可能性仅当不包含物品i也有可能会找到价值更大的方案的情况。
按以上思想写出递归算法如下:
try(物品i,当前选择已达到的重量和,本方案可能达到的总价值tv)
{ /*考虑物品i包含在当前方案中的可能性*/
if(包含物品i是可以接受的)
{ 将物品i包含在当前方案中;
if (i try(i+1,tw+物品i的重量,tv); else /*又一个完整方案,因为它比前面的方案好,以它作为最佳方案*/ 以当前方案作为临时最佳方案保存; 恢复物品i不包含状态; } /*考虑物品i不包含在当前方案中的可能性*/ if (不包含物品i仅是可男考虑的) if (i try(i+1,tw,tv-物品i的价值); else /*又一个完整方案,因它比前面的方案好,以它作为最佳方案*/ 以当前方案作为临时最佳方案保存; } 为了理解上述算法,特举以下实例。设有4件物品,它们的重量和价值见表: 物品 0 1 2 3 重量 5 3 2 1 价值 4 4 3 1 并设限制重量为7。则按以上算法,下图表示找解过程。由图知,一旦找到一个解,算法就进一步找更好的佳。如能判定某个查找分支不会找到更好的解,算法不会在该分支继续查找,而是立即终止该分支,并去考察下一个分支。 按上述算法编写函数和程序如下: 【程序】 # include # define N 100 double limitW,totV,maxV; int option[N],cop[N]; struct { double weight; double value; }a[N]; int n; void find(int i,double tw,double tv) { int k; /*考虑物品i包含在当前方案中的可能性*/ if (tw+a.weight<=limitW) { cop=1; if (i else { for (k=0;k option[k]=cop[k]; maxv=tv; } cop=0; } /*考虑物品i不包含在当前方案中的可能性*/ if (tv-a.value>maxV) if (i { for (k=0;k option[k]=cop[k]; maxv=tv-a.value; } } void main() { int k; double w,v; printf(“输入物品种数\\n”); scanf((“%d”,&n); printf(“输入各物品的重量和价值\\n”); for (totv=0.0,k=0;k { scanf(“”,&w,&v); a[k].weight=w; a[k].value=v; totV+=V; } printf(“输入限制重量\\ 百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库北大ACM试题分类[1](6)在线全文阅读。
相关推荐: