xn?p?xn?cos?n?1?2n?1?cos?n?2?2n?2?...?cos?n?p?2n?p
?12n?1?12n?2?...?12n?pp1??1??1????n?1?2?2??1?????n??
121?2n?1(2)xn?1?12?13?...???1?1n
11解 ?p,???0,取N?,当n?N时,有xn?p?xn????
???n?1n??2 满足下列条件的数列?xn?是不是柯西数列? (1)?p?N,limxn?p?xn?0
n???1?解 limxn?p?xn?0????0,?N,n?N时,?p?N,xn?p?xn??
n??(2)xn?1?xn?kxn?xn?1?0?k?1?
xn?p?xn?xn?p?xn?p?1?xn?p?1?xn?p?2?xn?p?2?...?xn?1?xn
kn?1??kn?p?2?kn?p?3?...?kn?1?x2?x1??1?k?p1?kx2?x1
故limxn?p?xn?0,故?xn?是柯西列。
n??n(3)?xk?1?xk?M
k?1n解 令yn??k?1xk?1?xk,则?yn?单调递增有上界,故?yn?收敛,故???0,?N,当
m?1?n?1?N时,有ym?1?yn?1??。故xm?xm?1?xm?1?xm?2?...?xn?1?xn??,
于是???0,?N,当m?n?N?1时,有xm?xn??。故?xn?是柯西列。 3 证明limf?x?存在的充要条件为???0,?Xx????0,当x?,x??\?X时,恒有
f?x???f??x??\??。
?2x???证明:必要性。设limf?x??A????0,?X,当x?X时有f?x??A?
故当x?,x??\?X时,有
f?x???f?x????f?x???A?A?f?x????f?x???A?A?f?x?????
充分性。???0,?X?0,当x?,x??\?X时,恒有f?x???f?x?????2。
?2设xn???n???,则???0,?N,当n?N时,有?p,f?xn?p??f?xn??故数列?f?xn??收敛,不妨设limf?xn??A。当n?N时,
n???
A?f?xn??limfp???xn?p??f?xn???2。
即当x?X时,取n?N,则xn?X,有
f?x??A?f?x??f?xn??f?xn??A?f?x??f?xn??f?xn??A??
故limf?x?存在。
x???注:也可利用第四节第6题的结论直接给出证明。
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库数学分析选讲刘三阳第二章答案(3)在线全文阅读。
相关推荐: