平谷区2017年初三统一练习(一)
一、选择题(本题共30分,每小题3分)
1.为解决“最后一公里”的交通接驳问题,平谷区投放了大量公租自行车供市民使用.据统计,目前我区共有公租自行车3 500辆.将3 500用科学记数法表示应为 A.0.35×104 B. 3.5×103
C.3.5×102 D. 35×102
2.把一个边长为1的正方形如图所示放在数轴上,以正方形的对角线为半径画弧交数轴于点A,则点A对应的数是 AA.1 B.2 C.3 D.2
3.右图是某几何体从不同角度看到的图形,这个几何体是
A.圆锥
B.圆柱 D.三棱锥
主视图 左视图 俯视图
-10123C.正三棱柱
2x2y?4.如果x+y=4,那么代数式2的值是
x?y2x2?y2A.﹣2 B.2 C.
11 D.? 225.下列图形中,既是轴对称图形,又是中心对称图形的是
A. B. C. D.
6.某商场一楼与二楼之间的手扶电梯如图所示.其中AB、CD分别表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是8 m,则乘电梯从点B到点C上升的高度h是
A.43m B.8 m
D.4 m
A 150° B C h D 83m C.3
7.在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:“今有凫(凫:野鸭)起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”意思是:野鸭从南海起飞,7天飞到北海;大雁从北海起飞,9天飞到南海.野鸭与大雁从南海和北海同时起飞,经过几天相遇.设野鸭与大雁从南海和北海同时起飞,经过x天相遇,根据题意,下面所列方程正确的是
A.(9?7)x?1 D. (B.(9?7)x?1
C.
11?)x?1 7911(?)x?179
8.如图,是利用平面直角坐标系画出的天安门广场的平面示意图,若
这个坐标系分别以正东、 正北方向为x轴、y轴的正方向, 表示国旗杆的点的坐标为(0,2.5), 表示中国国家博物馆的点的坐标为(4,1), 则表示下列建筑的点的坐标正确的是 A.天安门(0, 4)
B.人民大会堂(﹣4,1) C.毛主席纪念堂(﹣1,﹣3) D.正阳门(0,﹣5)
1
9.1-7月份,某种蔬菜每斤的进价与每斤的售价的信息如图所示,则出售该种蔬菜每斤利润最大的月份是
A.3月份 B.4月份 C.5月份 D.6月份
10.AQI是空气质量指数(Air Quality Index)的简称,是描述空气质量状况的指数.其数值越大说明空气污染状况越严重,对人体的健康危害也就越大.AQI共分六级,空气污染指数为0-50一级优,51-100二级良,101-150三级轻度污染,151-200四级中度污染,201-300五级重度污染,大于300六级严重污染.小明查阅了2015年和2016年某市全年的AQI指数,并绘制了如下统计图,并得出以下结论:①2016年重度污染的天数比2015年有所减少;②2016年空气质量优良的天数比2015年有所增加;③ 2015年和2016年AQI指数的中位数都集中在51-100这一档中;④2016年中度污染的天数比2015年多13天.以上结论正确的是
A. ①③ B. ①④ C.②③ D.②④ 二、填空题(本题共18分,每小题3分)
bx?311.如果分式的值为0,那么x的值是 .
x?112.如图,一个正方形被分成两个正方形和两个一模一样的矩形,请根据图形,写出一个含有a,b的正确的等式 .
13.请写出一个在各自象限内,y的值随x值的增大而增大的反比例函数表达式 .
14.一个猜想是否正确,科学家们要经过反复的论证.下表是几位科学家“掷硬币”的实验数据: 实验者 掷币次数 出现“正面朝上”的次数 频率 德·摩根 6 140 3 109 0.506 蒲丰 4 040 2 048 0.507 费勒 10 000 4 979 0.498 皮尔逊 36 000 18 031 0.501 80 640 39 699 0.492 aab罗曼诺夫斯基 请根据以上数据,估计硬币出现“正面朝上”的概率为 (精确到0.01).
15.如图,圆桌面正上方的灯泡发出的光线照射桌面后,在地面上形成阴影(圆形).已知灯泡距离地面2.4m,桌面距离地面0.8m(桌面厚度不计算),若桌面的面积是1.2m2,则地面上的阴影面积是 m2.
2
16.小米是一个爱动脑筋的孩子,他用如下方法作∠AOB的角平分线: 作法:如图,
(1)在射线OA上任取一点C,过点C作CD∥OB; A(2)以点C为圆心,CO的长为半径作弧,交CD于点E; (3)作射线OE.
所以射线OE就是∠AOB的角平分线. CED请回答:小米的作图依据是____________________________ ____________________________________________________.
三、解答题(本题共72分,第17-26题,每小题5分,第27
OB分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程. 17.计算:1?3?12?2cos30??20170.
?3x?2?x, 18.解不等式组???2x?1x?1并写出它的所有非负整数解...... ?5?2,
19.如图,在矩形ABCD中,点E是BC上一点,且DE=DA,AF⊥DE于F,求证:AF=CD. AD F BEC
20.已知关于x的一元二次方程x2-(m+2)x+2m=0.
(1)求证:方程总有两个实数根; (2)当m=2时,求方程的两个根.
3
题7
21.在平面直角坐标xOy中,直线y?kx?1?k?0?与双曲线y?与x轴交于点B.
(1) 求m的值和点B的坐标;
m?m?0?的一个交点为A(﹣2,3),x(2) 点P在y轴上,点P到直线y?kx?1?k?0?的距离为2,直接写出点P的坐标.
y A
B
xO
22.随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行.某自行车厂生产的某型号自行车去年销售总额为8万元.今年该型号自行车每辆售价预计比去年降低200元.若该型号车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求该型号自行车去年每辆售价多少元?
23.如图,在△ABC中,BD平分∠ABC交AC于D,EF垂直平分BD,分别交AB,BC,BD于E,F,G,连接DE,DF.
(1)求证:DE=DF; (2)若∠ABC=30°,∠C=45°,DE=4,求CF的长.
A
DE
G
BC F
24.阅读以下材料:
2017年1月28日至2月1日农历正月初一至初五,平谷区政府在占地面积6万平方米的琴湖公园举办主题为“逛平谷庙会乐百姓生活”的平谷区首届春节庙会.
4
本次庙会共设置了文艺展演区、非遗展示互动区、特色商品区、儿童娱乐游艺区、特色美食区等五个不同主题的展区.展区总面积1720平方米.文艺展演区占地面积600平方米,占展区总面积的34.9%;非遗展示区占地190平方米,占展区总面积的11.0%;特色商品区占地面积是文艺展演区的一半,占展区总面积的17.4%;特色美食区占地200平方米,占展区总面积的11.6%;还有孩子们喜爱的儿童娱乐游艺区.
此次庙会本着弘扬、挖掘、展示平谷春节及民俗文化,以京津冀不同地域的特色文化为出发点,全面展示平谷风土人情及津冀人文特色.大年初一,来自全国各地的约3.2万人踏着新春的脚步,揭开了首届平谷庙会的帷幕.大年初二尽管天气寒冷,市民逛庙会热情不减,又约有4.3万人次参观了庙会,品尝特色美食,观看绿都古韵、秧歌表演、天桥绝活,一路猜灯谜、赏图片展,场面火爆.琳琅满目的泥塑、木版画、剪纸、年画等民俗作品也让游客爱不释手,纷纷购买.大年初三,单日接待游客约4万人次,大年初四风和日丽的天气让庙会进入游园高峰,单日接待量较前日增长了约50%.大年初五,活动进入尾声,但庙会现场仍然人头攒动,仍约有5.5万人次来园参观. (1)直接写出扇形统计图中m的值;
(2)初四这天,庙会接待游客量约_______万人次;
(3)请用统计图或统计表,将庙会期间每日接待游客的人数表示出来.
25.如图,⊙O为等腰三角形ABC的外接圆,AB=AC,AD是⊙O的直径,切线DE与AC的延长线相交于点E.
(1)求证:DE∥BC;
CE(2)若DF=n,∠BAC=2α,写出求CE长的思路.
DAF O B
26.有这样一个问题:探究函数y??x+2?x的图象与性质.?
小军根据学习函数的经验, 对函数y??x+2?x的图象与性质进行了探究.? 下面是小军的探究过程, 请补充完整:
5
(1)函数y??x+2?x的自变量x的取值范围是 ;
(2)下表是 y与x的几组对应值 ? x ﹣2﹣1.9 ﹣1.5﹣10 1 2 3 4 … ﹣0.5 y 2 0 ﹣0.72﹣1.41 ﹣0.37 0 0.76 1.55 … 1.60 0.80 在平面直角坐标系xOy中, 描出了以上表中各对对应值为坐标的点,根据描出的点, 画出该函数的图象;
y4321O–2–1–1–2–312345x(3)观察图象,函数的最小值是 ; (4)进一步探究,结合函数的图象, 写出该函数的一条性质(函数最小值除..外): .
27.直线y??3x?3与x轴,y轴分别交于A,B两点,点A关于直线x??1的对称点为点C. (1)求点C的坐标;
(2)若抛物线y?mx?nx?3m?m?0?经过A,B,C三点,
2
54y求该抛物线的表达式;
(3)若抛物线y?ax?bx?3?a?0? 经过A,B两点,且顶点
232在第二象限,抛物线与线段AC有两个公共点,求a的取值范围. 1 –5–4–3–2–1O12x–1
–2
28.在△ABC中,AB=AC,∠A=60°,点D是BC边的中点,作射线DE,与边AB交于点E,射线DE绕点D顺时针旋转120°,与直线AC交于点F. (1)依题意将图1补全;
(2)小华通过观察、实验提出猜想:在点E运动的过程中,始终有DE=DF.小华把这个猜想与同学们
6
进行交流,通过讨论,形成了证明该猜想的几种想法:
想法1:由点D是BC边的中点,通过构造一边的平行线,利用全等三角形,可证DE=DF; 想法2:利用等边三角形的对称性,作点E关于线段AD的对称点P,由∠BAC与∠EDF互补,可得∠AED与∠AFD互补,由等角对等边,可证DE=DF;
想法3:由等腰三角形三线合一,可得AD是∠BAC的角平分线,由角平分线定理,构造点D到AB,AC的高,利用全等三角形,可证DE=DF…….
请你参考上面的想法,帮助小华证明DE=DF(选一种方法即可); (3)在点E运动的过程中,直接写出BE,CF,AB之间的数量关系.
A E BDC 图1
AEBDC备用图 7
29.在平面直角坐标系中,点Q为坐标系上任意一点,某图形上的所有点在∠Q的内部(含角的边),这时我们把∠Q的最小角叫做该图形的视角.如图1,矩形ABCD,作射线OA,OB,则称∠AOB为矩形ABCD的视角.
图1
图2
备用图
(1)如图1,矩形ABCD,A(﹣3,1),B(3,1),C(3,3),D(﹣3,3),直接写出视角∠AOB的度数;
(2)在(1)的条件下,在射线CB上有一点Q,使得矩形ABCD的视角∠AQB=60°,求点Q的坐标; (3)如图2,⊙P的半径为1,点P(1,3),点Q在x轴上,且⊙P的视角∠EQF的度数大于60°,若Q(a,0),求a的取值范围.
8
平谷区2016—2017学年度初三统练(一)
数学答案2017.4
一、选择题(本题共30分,每小题3分) 题号 答案 1 B 2 B 3 A 4 C 5 D 6 D 7 C 8 B 9 A 10 C 二、填空题(本题共18分,每小题3分) 11.3;12.?a?b??a2?2ab?b2; 13.答案不唯一,如y??21;14.0.50;15.2.7; x16.两直线平行,内错角相等; ············································································· 1
等腰三角形两底角相等; ················································································ 3 (其他正确依据也可以).
三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程. 17.解:1?3?12?2cos30??2017
0=3?1?23?2?3········································································ 4 ?1 ·
2=﹣2. ···································································································· 5
① ?3x?2?x ?18.解:?2x?1x?1,
②?5?2 ?············································································· 1 解不等式①得x≤1, ·········································································· 2 解不等式②得x>﹣3, ·
····························································· 3 ∴不等式组的解集是:﹣3<x≤1. ······························································ 5 ∴不等式组的非负整数解为0,1. ·
19.证明:∵矩形ABCD,
AD∴AD∥BC.
···································· 1 ∴∠ADE=∠DEC. ·
∵AF⊥DE于F,
F·································· 2 ∴∠AFD=∠C=90°. ·
BEC·············································· 3 ∵DE=DA, ·
···································· 4 ∴△ADF≌△DEC.
·············································· 5 ∴AF=CD. ·
20.(1)证明: ∵ Δ=[-(m+2)]2-4×2m ······································································ 1
2
=(m-2) ? ∵ (m-2)2≥0,
∴方程总有两个实数根. ································································ 2
2
························································· 3 (2)当m=2时,原方程变为x-4x+4=0. ·
······················································································· 5 解得x1=x2=2. ·
21.解:(1)∵双曲线y?m?m?0?经过点,A(﹣2,3), x9
∴m??6.···················································································· 1 ∵直线y?kx?1?k?0?经过点A(﹣2,3),
∴k??1. ···················································································· 2 ∴此直线与x轴交点B的坐标为(1,0). ··········································· 3 (2)(0,3),(0,-1). ············································································· 5
22.解:设去年该型号自行车每辆售价x元,则今年每辆售价为(x﹣200)元. ·············· 1
由题意,得
8000080000?1?10%?···························································· 2 , ?xx?200···················································································· 3 解得:x=2000. ·
······························································ 4 经检验,x=2000是原方程的根. ·
·············································· 5 答:去年该型号自行车每辆售价为2000元. ·
23.(1)证明:∵EF垂直平分BD,
∴EB=ED,FB=FD. ··············································································· 1 ∵BD平分∠ABC交AC于D, A∴∠ABD=∠CBD.
DE∵∠ABD+∠BEG=90°,∠CBD+∠BFG=90°,
G∴∠BEG=∠BFG.
∴BE=BF. BCFH∴四边形BFDE是菱形. ∴DE=DF. ···························································································· 2 (2)解:过D作DH⊥CF于H. ∵四边形BFDE是菱形, ∴DF∥AB,DE=DF=4.
在Rt△DFH中,∠DFC=∠ABC=30°, ∴DH=2.
∴FH=23. ························································································· 3 在Rt△CDH中,∠C=45°, ∴DH=HC=2. ························································································ 4 ∴CF=2+23. ······················································································ 5
24.(1)扇形统计图中m的值是25.1%; ······························································· 1
(2)6; ····································································································· 2 (3)如图. ································································································ 5
10
25.(1)证明:∵AB=AC,AD是⊙O的直径,
∴AD⊥BC于F. ···················································································· 1 ∵DE是⊙O的切线, ∴DE⊥AD于D.2 ∴DE∥BC. ··························································································· 2 (2)连结CD.
由AB=AC,∠BAC=2α,可知∠BAD=α. ··················································· 3 由同弧所对的圆周角,可知∠BCD=∠BAD=α. 由AD⊥BC,∠BCD =α,DF=n, CE根据sinα=
DF,可知CD的长. ················ 4 CDA由勾股定理,可知CF的长
由DE∥BC,可知∠CDE=∠BCD. 由AD是⊙O的直径,可知∠ACD=90°. 由∠CDE=∠BCD,∠ECD=∠CFD, 可知△CDF∽△DEC,可知
OFBDDFCF=,可求CE的长. ····························· 5 CECD26.(1)x??2; ······················································································· ····· 1
(2)该函数的图象如图所示; ········································································ 3?
y4321O–2–1–1–212345x (3)-2; ·························································································· ····· 4 (4)该函数的其它性质:当?2?x?0时,y随x的增大而减小; ····················· 5
(答案不唯一,符合函数性质即可写出一条即可)
27.解:(1)令y=0,得x=1.
∴点A的坐标为(1,0). ·································································· 1
11
–3∵点A关于直线x=﹣1对称点为点C, ∴点C的坐标为(﹣3,0). ·················· 2 (2)令x=0,得y=3.
∴点B的坐标为(0,3). ∵抛物线经过点B,
∴﹣3m=3,解得m=﹣1. ····················· 3 ∵抛物线经过点A,
∴m+n﹣3m=0,解得n=﹣2.
∴抛物线表达式为y??x?2x?3. ········ 4
254321yBC–4–3–2–1AO–1–212x(3)由题意可知,a<0.
根据抛物线的对称性,当抛物线经过(﹣1,0)时,开口最小,a=﹣3, ········· 5 此时抛物线顶点在y轴上,不符合题意.
当抛物线经过(﹣3,0)时,开口最大,a=﹣1. ········································· 6
结合函数图像可知,a的取值范围为?3?a??1. ····································· 7
28.解:(1)如图1, ························································································ 1
AEBDFC图1
(2)
A
AAGEBDFCBEDPFCEMBDNFC图2 图3
图4
想法1证明:如图2,过D作DG∥AB,交AC于G, ···································· 2
∵点D是BC边的中点, ∴DG=
1AB. 2∴△CDG是等边三角形. ∴∠EDB+∠EDG=120°. ∵∠FDG+∠EDG=120°, ∴∠EDB =∠FDG. ················································································· 3 ∵BD=DG,∠B=∠FGD=60°, ∴△BDE≌△GDF.················································································· 4 ∴DE=DF. ···························································································· 5 想法2证明:如图3,连接AD, ∵点D是BC边的中点, ∴AD是△ABC的对称轴.
12
作点E关于线段AD的对称点P,点P在边AC上, ······································· 2 ∴△ADE≌△ADP.
∴DE=DP,∠AED=∠APD. ∵∠BAC+∠EDF=180°, ∴∠AED+∠AFD=180°. ∵∠APD+∠DPF=180°, ∴∠AFD=∠DPF. ·················································································· 3 ∴DP=DF. ···························································································· 4 ∴DE=DF. ···························································································· 5 想法3证明:如图4,连接AD,过D作DM⊥AB于M,DN⊥AB于N, ············ 2 ∵点D是BC边的中点, ∴AD平分∠BAC.
∵DM⊥AB于M,DN⊥AB于N, ∴DM=DN. ··························································································· 3 ∵∠A=60°,
∴∠MDE+∠EDN=120°. ∵∠FDN+∠EDN=120°, ∴∠MDE=∠FDN.
∴Rt△MDE≌Rt△NDF. ············································································ 4 ∴DE=DF. ···························································································· 5 (3)当点F在AC边上时,BE?CF?1AB; ··········································· 6 21当点F在AC延长线上时,BE?CF?AB. ········································ 7
2
29.解:(1)120°; ··························································································· 1
(2)连结AC,在射线CB上截取CQ=CA,连结AQ. ··································· 2
∵AB=23,BC=2,
∴AC=4.··························· 3
∴∠ACQ=60°.
∴△ACQ为等边三角形, 即∠AQC=60°. ················ 4 ∵CQ=AC=4,
∴Q(3,﹣1). ············· 5
(3)
13
图1 图2
如图1,当点Q与点O重合时,∠EQF=60°, ∴Q(0,0). ··············································································· 6 如图2,当FQ⊥x轴时,∠EQF=60°, ∴Q(2,0). ··············································································· 7 ∴a的取值范围是0<a<2. ······························································ 8
14
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库2016-2017学年北京市平谷区九年级一模数学试卷及答案在线全文阅读。
相关推荐: