参考答案
x22.解:(Ⅰ)由已知条件,直线l的方程为y?kx?2,代入椭圆方程得?(kx?2)2?1.整理得
2?12?2?k??x?22kx?1?0 ① 2??直线l与椭圆有两个不同的交点P和Q等价于??8k2?4?2?1?或?k2??4k2?2?0,解得k??22??k?22.即k的取值范围为????∞,?2??2??2????2,?∞???. ???(Ⅱ)设P(x),则???OP?????OQ??(x42k1,y1),Q(x2,y21?x2,y1?y2),由方程①,x1?x2??1?2k2.②又yB(01,),???AB?1?y2?k(x1?x2)?22.③ 而A(2,,0)?(?21,).
所以???OP?????OQ?与???AB?共线等 价于x21?x2??2(y1?y2), 将②③代入上式,解得k?2.
由(Ⅰ)知k??22或k?22,故没有符合题意的常数k.
3.(I)由题意设椭圆的标准方程为
x2y2a2?b2?1(a?b?0),a?c?3,a?c?1a?2,c?1,b2?3?x2y24?3?1. ?(II)设A(x?y?kx?m2221,y1),B(x2,y2),由??x2y2,得(3?4k)x?8mkx?4(m?3)?0,
?4?3?1??64m2k2?16(3?4k2)(m2?3)?0,3?4k2?m2?0.x8mk1?x2??3?4k2x4(m2,?3)1?x2?3?4k2. y?(kx223(m2?4k2)1?y2?(kx1?m)2?m)?kx1x2?mk(x1?x2)?m?3?4k2. ?以AB为直径的圆过椭圆的右顶点D(2,0),kAD?kBD??1,
?y1x?2?y2x??1,y1y2?x1x2?2(x1?x2)?4?0, 12?2
1
, 2k3(m2?4k2)4(m2?3)16mk22m??2k,m?????4?07m?16mk?4k?0,,解得,且满足1273?4k23?4k23?4k23?4k2?m2?0.
当m??2k时,l:y?k(x?2),直线过定点(2,0),与已知矛盾;当m??定点(,0).综上可知,直线l过定点,定点坐标为(,0).
5.解:(I)因为AB边所在直线的方程为x?3y?6?0,且AD与AB垂直,所以直线AD的斜率为?3.
2k2时,l:y?k(x?),直线过772727,在直线AD上,所以AD边所在直线的方程为y?1??3(x?1).3x?y?2?0. 又因为点T(?11)(II)由??x?3y?6?0,?2),因为矩形ABCD两条对角线的交点为M(2,解得点A的坐标为(0,0).
?3x?y?2=0(2?0)2?(0?2)2?22.从而矩形ABCD外接圆的方程为
所以M为矩形ABCD外接圆的圆心.又AM?(x?2)2?y2?8.
(III)因为动圆P过点N,所以PN是该圆的半径,又因为动圆P与圆M外切,所以PM?PN?22,即PM?PN?22.故点P的轨迹是以M,N为焦点,实轴长为22的双曲线的左支.因为实半轴长a?2,x2y2??1(x≤?2). 半焦距c?2.所以虚半轴长b?c?a?2.从而动圆P的圆心的轨迹方程为
2222
?m??n,?m?0,n?0?m??2?6.解:(1)设圆C 的圆心为(m,n)则 ?解得?,所求的圆的方程为(x?2)2?(y?2)2?8
?n?2?m?n?22??2x2y2??1 ,右焦点为 F(4,0).设存在点Q(x,y)?C满(2)由已知可得 2a?10 a?5,椭圆的方程为
25922?412412?(x?2)?(y?2)?8Q(,)Q(,). 足条件,则?解得,故存在符合要求的点225555??(x?4)?y?16
?p),可设A(x1,y1),B(x2,y2), 7.解法1:(Ⅰ)依题意,点N的坐标为N(0,?x2?2py,22直线AB的方程为y?kx?p,与x?2py联立得?消去y得x?2pkx?2p?0.
?y?kx?p.2 2
由韦达定理得x1?x2?2pk,x1x2??2p2.于是S△ABN?S△BCN?S△ACN?·2px1?x2.
12?px1?x2?p(x1?x2)2?4x1x2?p4p2k2?8p2?2p2k2?2,
∴当k?0时,(S△ABN)min?22p2.
y B (Ⅱ)假设满足条件的直线l存在,其方程为y?a,
A C O N x AC的中点为O?,l与AC为直径的圆相交于点P,Q,PQ的中点为H,
则O?H?PQ,Q?点的坐标为??x1y1?p?,?. 22??∵O?P?1121y?p1AC?x1?(y1?p)2?y12?p2,O?H?a?1?2a?y1?p, 2222222y ∴PH?O?P?O?H?2121p??(y1?p2)?(2a?y1?p)2??a??y1?a(p?a), 442??l A B O?C O N ??p??∴PQ?(2PH)?4??a??y1?a(p?a)?.
2????22x ppp令a??0,得a?,此时PQ?p为定值,故满足条件的直线l存在,其方程为y?, 222即抛物线的通径所在的直线. 解法2:(Ⅰ)前同解法1,再由弦长公式得
AB?1?k2x1?x2?1?k2·(x1?x2)2?4x1x2?1?k2·4p2k2?8p2?2p1?k2·k2?2,
又由点到直线的距离公式得d?2p1?k22.
从而S△ABN?·d·AB?·2p1?k·k?2·121222p1?k2?2p2k2?2,
∴当k?0时,(S△ABN)min?22p2.
(Ⅱ)假设满足条件的直线l存在,其方程为y?a,则以AC为直径的圆的方程为
(x?0)(x?x1)?(y?p)(y?y1)?0,将直线方程y?a代入得x2?x1x?(a?p)(a?y1)?0,
则△?x1?4(a?p)(a?y1)?4??a?2????p??.设直线l与以AC为直径的圆的交点为y?a(p?a)?1?2????p??p??P(x3,y3),Q(x4,y4),则有PQ?x3?x4?4??a??y1?a(p?a)??2?a??y1?a(p?a).
2?2?????
3
令a?ppp?0,得a?,此时PQ?p为定值,故满足条件的直线l存在,其方程为y?,即抛物线的通222径所在的直线.
?????????????????解法一:(I)设M(x,y),则则FM?(x?2,y),F1A?(x1?2,y1),F1B?(x2?2,y2),FO?(2,0),11??????????????????x?2?x1?x2?6,?x1?x2?x?4,?x?4y?AB由FM得即于是的中点坐标为,?. ?FA?FB?FO???1111?22??y1?y2?y?y?y1?y2yyy?y2y2(x1?x2).又因为A,B两点在双曲当AB不与x轴垂直时,1,即y1?y2???x?8x1?x2x?4?2x?82222线上,所以x1?y12?2,x2?y2?2,两式相减得(x1?x2)(x1?x2)?(y1?y2)(y1?y2),即
y(x1?x2)代入上式,化简得(x?6)2?y2?4. .将(x1?x2)(x?4?)1y(?2yy)y1?y2?x?80),当AB与x轴垂直时,x1?x2?2,求得M(8,也满足上述方程.所以点M的轨迹方程是(x?6)2?y2?4. ????????0),使CA?(II)假设在x轴上存在定点C(m,CB为常数.
22当AB不与x轴垂直时,设直线AB的方程是y?k(x?2)(k??1).代入x?y?2有
4k24k2?22222,x1x2?2, (1?k)x?4kx?(4k?2)?0.则x1,x2是上述方程的两个实根,所以x1?x2?2k?1k?1????????于是CA?CB?(x1?m)(x2?m)?k2(x1?2)(x2?2)?(k2?1)x1x2?(2k2?m)(x1?x2)?4k2?m2
(k2?1)(4k2?2)4k2(2k2?m)2(1?2m)k2?24?4m2222???4k?m??m?2(1?2m)??m. 2222k???k?1k?1k?1??1????????????因为CA?CB是与k无关的常数,所以4?4m?0,即m?1,此时CA?CB=?1.
????????当AB与x轴垂直时,点A,B的坐标可分别设为(2,2),(2,此时CA?CB?(1 ,2)?(1,?2)??1.?2),
????????0),使CA?CB为常数. 故在x轴上存在定点C(1,?x1?x2?x?4,解法二:(I)同解法一的(I)有?当AB不与x轴垂直时,设直线AB的方程是
y?y?y?12y?k(x?2)(k??1). 4k2代入x?y?2有(1?k)x?4kx?(4k?2)?0.则x1,x2是上述方程的两个实根,所以x1?x2?2.
k?1?4k2?4k. y1?y2?k(x1?x2?4)?k??4??2?k?1?k?12222228.解:由条件知F1(?2,0),F2(2,0),设A(x1,y1),B(x2,y2).
4k4k2由①②③得x?4?2.④y?2.⑤
k?1k?1x?44y(x?4)x?4y??k,将其代入⑤有y?当k?0时,y?0,由④⑤得,.整理得
(x?4)2(x?4)2?y2y?1y24?(x?6)2?y2?4.
0),满足上述方程. 当k?0时,点M的坐标为(4,0),也满足上述方程.故点M的轨迹方程是(x?6)2?y2?4.当AB与x轴垂直时,x1?x2?2,求得M(8,
4
?????(II)假设在x轴上存在定点点C(m,使C0),ACB?4k2?2x1x2?2.以上同解法一的(II).
k?1
4k2为常数,当AB不与x轴垂直时,由(I)有x1?x2?2?1,
kC⊥BD9.证明:(Ⅰ)椭圆的半焦距c?3?2?1,由A2222y0x0y0x21?≤???1. 所以,3222222知点P在以线段F1F2为直径的圆上,故x0 ?y0?1,
x2y2??1,并化简(Ⅱ)(ⅰ)当BD的斜率k存在且k?0时,BD的方程为y?k(x?1),代入椭圆方程326k23k2?6得(3k?2)x?6kx?3k?6?0.设B(x1,y1),D(x2,y2),则x1?x2??2,x1x2? 23k?23k?2222243(k2?1)BD?1?k?x1?x2?(1?k)???(x2?x2)?4x1x2???3k2?2;因为AC与BC相交于点P,且AC的
222?1?43?2?1?143(k2?1)k??斜率为?,所以,AC?. ?21k2k?33?2?2k124(k2?1)2??(k2?1)296≥?四边形ABCD的面积S??BDAC?. 222222(3k?2)(2k?3)?(3k?2)?(2k?3)?25??2??当k?1时,上式取等号.
(ⅱ)当BD的斜率k?0或斜率不存在时,四边形ABCD的面积S?4.综上,四边形ABCD的面积的最小值为
10.解:(1)依题设,圆O的半径r等于原点O到直线x?3y?4的距离,即r?22296. 254?2.得圆O的方1?3程为x?y?4.
0)B(2,0). (2)不妨设A(x1,,0)B(x2,,0)x1?x2.由x?4即得A(?2,,设P(x,y),由PA,PO,PB成等比数列,得(x?2)2?y2?(x?2)2?y2?x2?y2,即x2?y2?2.
2????????PA?PB?(?2?x,?y)?(2?x,?y)
5
?x2?4?y2
22??????????x?y?4,2由于点P在圆O内,故?2,由此得y?1.所以PA?PB的取值范围为[?2,0). 22?2(y?1).??x?y?2.?c6,x2??211.解:(Ⅰ)设椭圆的半焦距为c,依题意?a3?b?1,?所求椭圆方程为?y?1.
3?a?3,?(Ⅱ)设A(x1,y1),B(x2,y2). (1)当AB⊥x轴时,AB?3.
(2)当AB与x轴不垂直时,设直线AB的方程为y?kx?m.由已知m1?k2?3232,得m?(k?1).
42?6km3(m2?1)把y?kx?m代入椭圆方程,整理得(3k?1)x?6kmx?3m?3?0,?x1?x2?2,x1x2?.
3k?13k2?1222?36k2m212(m2?1)?12(k2?1)(3k2?1?m2)3(k2?1)(9k2?1)?AB?(1?k)(x2?x1)?(1?k)?2 ????222222(3k?1)(3k?1)(3k?1)3k?1??222212k21212?3?4?3?(k?0)≤3??4.
19k?6k2?12?3?629k?2?6k当且仅当9k?213k??,即时等号成立.当k?0时,AB?3,综上所述ABmax?2.?当AB最2k3大时,△AOB面积取最大值S?
133?ABmax??. 2220),F10,?b2?c2,F20,b2?c2, 12.解:(1)? F0(c,?F0F2??????b237?c2??c2?b?1,F1F2?2b2?c2?1,于是c2?,a2?b2?c2?,所求“果圆”方程为
44424x?y2?1(x≥0),y2?x2?1(x≤0). 732222(2)由题意,得 a?c?2b,即a2?b2?2b?a.?(2b)?b?c?a,?a2?b2?(2b?a)2,
b4b21b?242222?得?.又b?c?a?b,?.???,2?a?25a52a???. ?x2y2y2x2(3)设“果圆”C的方程为2?2?1(x≥0),2?2?1(x≤0).记平行弦的斜率为k.
abbc 6
?t2?x2y2当k?0时,直线y?t(?b≤t≤b)与半椭圆2?2?1(x≥0)的交点是P?a1?2,t?,与半椭圆
??bab???a?ct22??tyx?x??1?2,M(x,y)P,Q的交点是.的中点满足 Q??c1?,t????1(x≤0)?2b 2??bb2c2?y?t,???22得
???2y2a?c?2ba?c?2b?a?c?2a?2b?b???0. . , ??1????22222??ba?c??2?x2综上所述,当k?0时,“果圆”平行弦的中点轨迹总是落在某个椭圆上.当k?0时,以k为斜率过B1的直?2ka2bk2a2b?b3?x2y2,22线l与半椭圆2?2?1(x≥0)的交点是?22. 22?ka?bka?bab??b2由此,在直线l右侧,以k为斜率的平行弦的中点轨迹在直线y??2x上,即不在某一椭圆上.当k?0时,
ka可类似讨论得到平行弦中点轨迹不都在某一椭圆上.
13.解:(Ⅰ)解法一:易知a?2,b?1,c?3,所以F1?3,0,F2???3,0,设P?x,y?,则
??????????PF1?PF2??3?x,?y,???x213?x,?y?x?y?3?x?1??3??3x2?8?
44?222??????????2。当x??2,即点P为椭圆因为x???2,2?,故当x?0,即点P为椭圆短轴端点时,PF1?PF2有最小值?????????1长轴端点时,PF1?PF2有最大值
解法二:易知a?2,b?1,c?3,所以F1?3,0,F2???3,0,设P?x,y?,则
?????2?????2?????2???????????????????????????PF1?PF2?F1F2PF1?PF2?PF1?PF2?cos?F1PF2?PF1?PF2??????????2PF1?PF21??x?3?2???2?y?x?32??2?y2?12??x2?y2?3(以下同解法一)
???y?kx?2?(Ⅱ)显然直线x?0不满足题设条件,可设直线l:y?kx?2,A?x1,y2?,B?x2,y2?,联立?x2,消去y,2??y?1?4整理得:?k???21?24k3 ∴ x?4kx?3?0x?x??,x?x??1212114?k2?k2?447
由???4k??4?k?002??331?2得:或 k??k??3?4k?3?0?224?????????????????又0??A0B?90?cos?A0B?0?OA?OB?0 ∴OA?OB?x1x2?y1y2?0
?k2?1?8k2??4?又y1y2??kx1?2??kx2?2??kx1x2?2k?x1?x2??4?
111k2?k2?k2?44423k2?k2?133??0,即k2?4 ∴?2?k?2,故由①、②得?2?k??∵或?k?2 112222k?k?443
14.(Ⅰ)证法一:由题设AF2?F,0),F2(c,0),不妨设点A(c,y),其中y?0.由于点A在1F2及F1(?cc2y2a2?b2y2?2?1. 椭圆上,有2?2?1,即
aba2b?b2?b2b2(x?c),整理得b2x?2acy?b2c?0. 解得y?,从而得到A?c,?.直线AF1的方程为y?2aca?a?1cb2c222由题设,原点O到直线AF1的距离为OF1,即?,将c?a?b代入上式并化简得
33b4?4a2c2a2?2b2,即a?2b.
?b2?证法二:同证法一,得到点A的坐标为?c,?.过点O作OB?AF垂足为B,易知△F1BO∽△F1,1F2A,
?a?故
BOOF1?F2AF1AO?OF.由椭圆定义得AF又B1?AF2?2a,
131,所以
F2Aa1F2A,解得F2A?,??23F1A2a?F2Ay B A b2b2a?,即a?2b. 而F2A?,得
aa2(Ⅱ)解法一:设点D的坐标为(x0,y0).
当y0?0时,由OD?QQ12知,直线Q1Q2的斜率为?2x0x0或y?kx?m,其中k??,m?y0?.
y0y0F1 O F2 x x0x,所以直线Q1Q2的方程为y??0(x?x0)?y0,y0y0?y?kx?m,点Q1(x1,y1),Q2(x2,y2)的坐标满足方程组?2 22x?2y?2b.?
8
将①式代入②式,得x2?2(kx?m)2?2b2,整理得(1?2k2)x2?4kmx?2m2?2b2?0,于是x1?x2??4km,
1?2k22m2?2bx1x2?.由①式得y1y2?(kx1?m)(kx2?m)?k2x1x2?km(x1?x2)?k2 21?2k2m2?2b2?4kmm2?2b2k22?k·?km·?m?. 221?2k1?2k1?2k23m2?2b2?2b2k2?0,3m2?2b2(1?k2).将由OQ1?OQ2知x1x2?y1y2?0.将③式和④式代入得21?2k22x0x022?y0?b2. k??,m?y0?代入上式,整理得x03y0y0当y0?0时,直线Q1Q2的方程为x?x0,Q1(x1,y1),Q2(x2,y2)的坐标满足方程组??x?x0,222?x?2y?2b.
222b2?x0222b2?x022x?b.x??0所以x1?x2?x0,y1,.由知,即,解得 xx?yy?0OQ?OQ??001212122322这时,点D的坐标仍满足x0?y0?22222b.综上,点D的轨迹方程为 x2?y2?b2. 33D,可知直线解法二:设点D的坐标为(x0,y0),直线OD的方程为y0x?x0y?0,由OD?QQ12,垂足为
2222.记m?x0(显然m?0),点Q1(x1,y1),Q2(x2,y2)的坐标满足方程组Q1Q2的方程为x0x?y0y?x0?y0?y0??x0x?y0y?m, ①222222由①式得.③ 由②式得yy?m?xxyx?2yy?2y?200000b.④ 22??x?2y?2b. ②2222将③式代入④式得y0x?2(m?x0x)2?2y0b.
22m2?2b2y0整理得(2x?y)x?4mx0x?2m?2by?0,于是x1x2?.⑤由①式得x0x?m?y0y.⑥222x0?y0202022220222222由②式得x0x?2x0y?2x0b.⑦
2222222222将⑥式代入⑦式得(m?y0y)2?2x,整理得,于是y?2xb(2x?y)y?2myy?m?2bx?00000002m2?2b2x0.⑧ y1y2?222x0?y0222m2?2b2y0m2?2b2x0由OQ1?OQ2知x1x2?y1y2?0.将⑤式和⑧式代入得??0, 22222x0?y02x0?y0222222222222代入上式,得x0?y0?b.所以,点D的轨迹方程为x?y?b. 3m2?2b2(x0?y0)?0.将m?x0?y033
9
x22?b2?1,解得x1,15.(Ⅰ)解:设点A的坐标为(x1,b),点B的坐标为(x2,b),由2??21?b, 4所以S?12b?x1?x2?2b?1?b2≤b2?1?b2?1.当且仅当b?时,S取到最大值1. 22?y?kx?b,??21?2222??4k?b?1, (Ⅱ)解:由?x2得,k?x?2kbx?b?1?0??24???y?1,??44k2?b2?1|AB|?1?k?|x1?x1|?1?k??2.②
1?k2422设O到AB的距离为d,则d?2S|b|22?1,又因为d?,所以b?k?1,代入②式并整理,得 |AB|1?k2k4?k2?113?0,解得k2?,b2?,代入①式检验,??0, 422故直线AB的方程是y?
26262626或y?或y??,或y??. x?x?x?x?22222222x2y2a216.解:(Ⅰ)设椭圆方程为2?2?1.因焦点为F(3,0),故半焦距c?3.又右准线l的方程为x?,从
caba2x2y2222?12,a?36,因此a?6,b?a?c?27?33.故所求椭圆方程为??1. 而由已知c3627(Ⅱ)记椭圆的右顶点为A,并设?AFP,2,3),不失一般性,假设0??1?i??i(i?12?,且3?2??1?2?4?c1,?3??1?.又设Pi在l上的射影为Qi,因椭圆的离心率e??,从而有33a2a21|FPi|?|PiQi|?e?(?c?|FPi|cos?i)e?(9?|FPi|cos?i)(i?1,2,3).
c2解得
121?(1?cos?i)(i?1,2,3). |FPi|92111212?4????[3?(cos?1?cos(?1?)?cos(?1?))], |FP|FP2||FP92331|3|因此
而cos?1?cos(?1?2?)?cos(?1?4?)?cos?1?1cos?1?3cos?1?1cos?1?3cos?1?0,
332222故
1112???为定值. |FP|FP2||FP3|31|10
????????????????A?x1,y1?,B?x2,y2?,OA=?x1,y1?,OB??x2,y2?,因为OA?OB?2,所以
k?c?2,即c2?c?2?0,所以c?2舍去c??1 所以?c?kc?kc?2217.解:(1)设过C点的直线为y?kx?c,所以x2?kx??cc?0?,即x?kx?c?0,设
2x1x2?y1y2?2,即x1x2??kx1?c??kx2?c??2,x1x2?k2x1x2?kc?x1?x2??c2?2
??(2)设过Q的切线为y?y1?k1?x?x1?,y/?2x,所以k1?2x1,即y?2x1x?2x12?y1?2x1x?x12,
?x1??cx1y2?y??kk2?x1?2?k?,?c?,它与y??c的交点为M??又P?,所以Q因为x1x2??c ,?c,?,?c???,??2222x222??????1??c?xx??k?所以??x2,所以M?1?2,?c???,?c?,所以点M和点Q重合,也就是QA为此抛物线的切线。
x1??22??2x?x2k?k??k??,所(3)(2)的逆命题是成立,由(2)可知Q?,?c?,因为PQ?x轴,所以P?,yP?因为12222????以P为AB的中点。
0),过P(0,2)且斜率为k的直线方程为18.解:(Ⅰ)圆的方程可写成(x?6)2?y2?4,所以圆心为Q(6,y?kx?2.
代入圆方程得x2?(kx?2)2?12x?32?0,整理得(1?k2)x2?4(k?3)x?36?0.① 直线与圆交于两个不同的点A,B等价于??[4(k?3)2]?4?36(1?k2)?42(?8k2?6k)?0,解得?3?k?0,即k的取值范围为4????????4(k?3)(Ⅱ)设A(x1,y1),B(x2,y2),则OA?OB?(x1?x2,y1?y2),由方程①,x1?x2?? ② 21?k????????????????又y1?y2?k(x1?x2)?4.③ 而P(0,,2)Q(6,,0)PQ?(6,?2).所以OA?OB与PQ共线等价于
3?3?(x1?x2)?6(y1?y2),将②③代入上式,解得k??.由(Ⅰ)知k??,0?,故没有符合题意的常数k.
4?4??3?0?. ??,?4?x22?y2?1x??21?b(x,b)(x,b)1,219.(I)解:设点A的坐标为(1,点B的坐标为2,由4,解得 12S?b|x1?x2|?2b1?b2?b2?1?b2?1b?22时,所以当且仅当.S取到最大值1.
?y?kx?b?2?x2??y?1(4k2?1)x2?8kbx?4b2?4?0??16(4k2?b2?1)(Ⅱ)解:由?4得,①
|AB|=1?k|x1?x2|?1?k22|b|2S16(4k2?b2?1)d???1?222|AB|所以1?k4k?1② 又因为O到AB的距离
k2?123,b?22,代入①式检验,△>0
b2?k2?1③ ③代入②并整理,得4k4?4k2?1?0,解得,
11
y?故直线AB的方程是
26262626x?y?x?y??x?y??x?22或22或22或22.
20.解:(I)因为AB边所在直线的方程为x?3y?6?0,且AD与AB垂直,所以直线AD的斜率为?3. 又因为点T(?11),在直线AD上,所以AD边所在直线的方程为y?1??3(x?1).3x?y?2?0.
(II)由??x?3y?6?0,解得点A的坐标为(0,?2),因为矩形ABCD两条对角线的交点为M(2,0).
?3x?y?2=0(2?0)2?(0?2)2?22.从而矩形ABCD外接圆的方程为
所以M为矩形ABCD外接圆的圆心.又AM?(x?2)2?y2?8.
(III)因为动圆P过点N,所以PN是该圆的半径,又因为动圆P与圆M外切,所以PM?PN?22, 即PM?PN?22.故点P的轨迹是以M,N为焦点,实轴长为22的双曲线的左支.
因为实半轴长a?2,半焦距c?2.所以虚半轴长b?c2?a2?2.从而动圆P的圆心的轨迹方程为
x2y2??1(x≤?2). 22?y?kx,???k2?8?0,220.解:(I)由方程?消y得x?kx?2?0.① 依题意,该方程有两个正实根,故?2y?x?2??x1?x2?k?0,解得k?22.
2(II)由f?(x)?2x,求得切线l1的方程为y?2x1(x?x1)?y1,由y1?x1?2,并令y?0,得t?x11? 2x1k?k2?84,k?22,x1是关于k的减函数,所x1,x2是方程①的两实根,且x1?x2,故x1??22k?k?8以x1的取值范围是(0,2).t是关于x1的增函数,定义域为(0,2),所以值域为(??,0),
(III)当x1?x2时,由(II)可知OM?t??x11?. 2x1类似可得ON?x21x?xx?x?.OM?ON??12?12.由①可知x1x2?2.从而OM?ON?0. 2x22x1x2当x2?x1时,有相同的结果OM?ON?0.所以OM?ON.
12
22.解:(1) 设圆C的圆心为(m,n),则???m??n??n?2?22 解得??m??2,所求的圆的方程为
?n?2(x?2)2?(y?2)2?8
x2y2??1,右焦点为F( 4, 0) ;假设存在Q点(2)由已知可得2a?10 a?5,椭圆的方程为
259??2?22cos?,2?22sin?使QF?OF,22???2?22cos??4?2?22sin???2?2?4
整理得sin??3cos??22 代入sin??cos??1 得:
10cos2??122cos??7?0 , cos??
?122?8?122?22???1,因此不存在符合题意的Q点.
1010?p),23.解法1:(Ⅰ)依题意,点N的坐标为N(0,可设A(x1,y1),B(x2,y2),直线AB的方程为y?kx?p,?x2?2py,与x?2py联立得?消去y得x2?2pkx?2p2?0.由韦达定理得x1?x2?2pk,x1x2??2p2.
?y?kx?p.2于是S△AMN?S△BCN?S△ACN1?·2px1?x2.?px1?x2?p(x1?x2)2?4x1x2 2y ?p4p2k2?8p2?2p2k2?2, ∴当k?0,(S△ABN)min?22p2.
(Ⅱ)假设满足条件的直线l存在,其方程为y?a,
A B C O N x ??PQ,Q?点的坐标为,PQ的中点为H,则OH设AC的中点为O?,l与AC为直径的圆相交于点P,Q1121y1?p1?x1y1?p?222??∵OP?AC?x?(y?p)?y?p.,,OH?a??2a?y1?p, 111??2222222??∴PH?O?P?O?H?222121p??(y1?p2)?(2a?y1?p)2??a??y1?a(p?a), 442??pp??p??2∴PQ?(2PH)2?4??a??y1?a(p?a)?.令a??0,得a?,此时PQ?p为定值,故满足条件
222????p的直线l存在,其方程为y?,即抛物线的通径所在的直线.
2
13
y B l A O?C O N x 解法2:(Ⅰ)前同解法1,再由弦长公式得
AB?1?k2x1?x2?1?k2·(x1?x2)2?4x1x2?1?k2·4p2k2?8p2?2p1?k2·k2?2,
又由点到直线的距离公式得d?2p1?k22.
从而S△ABN?·d·AB?·2p1?k·k?2·121222p1?k2?2p2k2?2,
∴当k?0时,(S△ABN)max?22p2.
(Ⅱ)假设满足条件的直线l存在,其方程为y?a,则以AC为直径的圆的方程为
(x?0)(x?x1)?(y?p)(y?y1)?0,将直线方程y?a代入得x2?x1x?(a?p)(a?y1)?0,则
△?x12?4(a???p?p)?(a1?y)?4a?1???2???y??直线l与以AC为直径的圆的交点为a(.p设)a??p?p???P(x3,y3),Q(x4,y4),则有PQ?x3?x4?4?a??y1?a(p?a)?2?a??y1?a(p?a).
2?2???令a?ppp?0,得a?,此时PQ?p为定值,故满足条件的直线l存在,其方程为y?,即抛物线的通222径所在的直线.
24.解:由条件知F(2,0),设A(x1,y1),B(x2,y2)
(I)当AB与x轴垂直时,可设点A、B的坐标分别为(2,2)、(2,?2),此时
????????CA?CB?(1,2)?(1,?2)??1
22当AB不与x轴垂直时,设直线AB的方程是y?k(x?2)(k??1)代入x?y?2,有
4k24k2?2,x1x2?2 (1?k)x?4kx?(4k?2)?0,则x1,x2是上述方程的两实根,所以x1?x2?2k?1k?12222????????于是CA?CB?(x1?1)(x2?1)?y1y2?(x1?1)(x2?1)?k2(x1?2)(x2?2)
(k2?1)(4k2?2)4k2(2k2?1)2??4k?1 ?(k?1)x1x2?(2k?1)(x1?x2)?4k?1?22k?1k?1222?????????(?4k?2)?4k?1??1,综上所述,CA?CB为常数?1
22(Ⅱ)解法一 设M(x,y),则CM?(x?1,y),CA?(x1?1,y1),CB?(x2?1,y2),CO?(?1,0),由
?x?1?x1?x2?3?x1?x2?x?2x?2y,) ,即?,于是AB的中点坐标为(CM?CA?CB?CO得:?22?y?y1?y2?y1?y2?y
14
yy?y2yy2(x1?x2),又因为A、B两点在当AB不与x轴垂直时,1,即y1?y2???x?2x?2x1?x2x?2?2222??x1?y1?2双曲线上,所以?,两式相减得(x1?x2)(x1?x2)?(y1?y2)(y1?y2),
22??x2?y2?2y(x1?x2)代入上式,即(x1?x2)(x?2)?(y1?y2)y,将y1?y2?化简得x2?y2?4,当AB与x轴x?2垂直时,x1?x2?2,求得M(2,0),也满足上述方程。所以点M的轨迹方程是:x2?y2?4
?x1?x2?x?2解法二 同解法一得 ? ①
y?y?y2?14k24k24k当AB不与x轴垂直时,由(I)有x1?x2?2 ② y1?y2?k(x1?x2?4)?k(2③ ?4)?2k?1k?1k?14k4k2x?2?k,将其代入⑤由①②③得:x?2?2, ④ y?2 ⑤,当k?0时,y?0,由④、⑤得:yk?1k?14?有y?x?2y(x?2)2?1y2?4y(x?2),整理得:x2?y2?4,当k?0时,点M的坐标为(?2,0),满足上述方程 22(x?2)?y当AB与x轴垂直时,x1?x2?2,求得M(2,0),也满足上述方程。故点M的轨迹方程是:x2?y2?4
222225.解:(1)在△PF1F2中,FF,?24?d?d?2ddcos2??(d?d)?4ddsin? 1212121212。故动点P的轨迹C是以F(d1?d2)2?4?4?,d1?d2?21??(小于2的常数)1,F2为焦点,实轴长
x2y2??1. 2a?21??的双曲线.方程为1???(2)方法一:在△AF1B中,设AF1B为等腰直角1?d1,AF2?d2,BF1?d3,BF2?d4.假设△AF三角形,则
??d1?d2?2a?①??d3?d4?2a?②? ?d3?d4?d2?③??d1?2d3?④?2π???⑤?d3d4sin?4
15
由②与③得d2?2a,
?d1?4a?则?d3?22a ??d4?d3?2a?2(2?1)a由⑤得d3d4?2?,42(2?1)a2?2?,(8?42)(1??)?2?,
??12?22?(0,1),故存在17??12?22满足题设条件. 17方法二:(1)设△AF1B为等腰直角三角形,依题设可得
?2?22??2πAF?AF??,AF?AF?sin???1212?π??82?1 1?cos???42π?BF?BF????12sin???4?BF1?BF2?2?所以S△AF1F2?由
1π1AF1?AF2sin?(2?1)?,S△BF1F2?BF1?BF2??.则S△AF1B?(2?2)?.① 242S△AF1F2S△BF1F2?AF2BF2?2?1,可设BF2?d,则AF2?(2?1)d,BF1?AB?(2?2)d.
则S△AF1B?112AB?(2?2)2d2.② 由①②得(2?2)d2?2?.③ 22根据双曲线定义BF1?BF2?2a?21??可得,平方得:④ (2?1)d?21??.(2?1)2d2?4(1??).由③④消去d可解得,??
22y1y2,y2),y1)26.(Ⅰ)解法一:设A、B两点坐标分别为(,(,由题设知 2212?2212?22满足题设条件. ?(0,1),故存在??17172222y1y2y1y2222222()?y1?()?y2?(?)2?(y1?y2)2,解得y1所以A(6,23),B(6,-23)?y2?12,2222或A(6,-23),B(6,23)。设圆心C的坐标为(r,0),则r?2?6?4,所以圆C的方程为(x?4)2?y2?16. 32222解法二:设A、B两点坐标分别为(x1,y1),(x2,y2),由题设知x1 ?y1?x2?y22222又因为y1?2x1,y2?2x2,可得x1?2x1?x1?2x2,即(x1?x2)(x1?x2?2)?0。
由x1>0,x2>0,可知x1=0,故A、B两点关于x轴对称,所以圆心C在x轴上,设C点的坐标为(r,0),则33323r)r)?2?r,解得r=4,所以圆C的方程为(x?4)2?y2?16。 A点的坐标为(,,于是有(2222
16
(Ⅱ)解:设∠ECF=2a,则CE?CF?|CE|?|CF|?cos2a?32cos2a?16,在Rt△PCE中,cosa?由圆的几何性质得
r4?,|PC||PC|C⊥BD27.证明(Ⅰ)椭圆的半焦距c?3?2?1,由A2222x0y0x0y01?≤???1. 所以,3222222知点P在以线段F1F2为直径的圆上,故x0 ?y0?1,
x2y2??1,并化简(Ⅱ)(ⅰ)当BD的斜率k存在且k?0时,BD的方程为y?k(x?1),代入椭圆方程326k23k2?6得(3k?2)x?6kx?3k?6?0.设B(x1,y1),D(x2,y2),则x1?x2??2,x1x2?, 23k?23k?2222243(k2?1)BD?1?k?x1?x2?(1?k)???(x2?x2)?4x1x2???3k2?2;因为AC与BC相交于点p,且AC的
222?1?43?2?1?143(k2?1)k??斜率为?.所以,AC?. ?21k2k?33?2?2k124(k2?1)2??(k2?1)296≥?四边形ABCD的面积S??BD?AC?. 222222(3k?2)(2k?3)?(3k?2)?(2k?3)?25??2??当k?1时,上式取等号.
(ⅱ)当BD的斜率k?0或斜率不存在时,四边形ABCD的面积S?4.综上,四边形ABCD的面积的最小值为
296. 25?c6?,x2?228.解:(Ⅰ)设椭圆的半焦距为c,依题意?a3?b?1,?所求椭圆方程为?y?1.
3?a?3,?(Ⅱ)设A(x1,y1),B(x2,y2). (1)当AB⊥x轴时,AB?3.
(2)当AB与x轴不垂直时,设直线AB的方程为y?kx?m.由已知m1?k2?3232,得m?(k?1).
42?6km3(m2?1)把y?kx?m代入椭圆方程,整理得(3k?1)x?6kmx?3m?3?0,?x1?x2?2,x1x2?. 23k?13k?1222 17
?36k2m212(m2?1)?12(k2?1)(3k2?1?m2)3(k2?1)(9k2?1)?AB?(1?k)(x2?x1)?(1?k)?2 ????222222(3k?1)(3k?1)3k?1??(3k?1)222212k21212?3?4?3?(k?0)≤3??4.
19k?6k2?12?3?629k?2?6k当且仅当9k?213,即时等号成立.当k?0时,AB?3,综上所述ABmax?2. k??k23133. ??当AB最大时,△AOB面积取最大值S??ABmax?222
29.(Ⅰ)易知a?2,b?1,c?3.∴F1(?3,0),F2(3,0).设P(x,y)(x?0,y?0).则
?????????5x222PF1?PF2?(?3?x,?y)(3?x,?y)?x?y?3??,又?y2?1,
447?22x?y??x?1?x2?1?3?4??联立?2,解得?,P(1,). ??3322?x?y2?1?y??y??4?2??4(Ⅱ)显然x?0不满足题设条件.可设l的方程为y?kx?2,设A(x1,y1),B(x2,y2).
?x2??y2?1联立?4?x2?4(kx?2)2?4?(1?4k2)x2?16kx?12?0
?y?kx?2?∴x1x2?1216kx?x??, 12221?4k1?4k222222由??(16k)?4?(1?4k)?12?0,16k?3(1?4k)?0,4k?3?0,得k?????????????????又?AOB为锐角?cos?AOB?0?OA?OB?0,∴OA?OB?x1x2?y1y2?0
3.① 4又y1y2?(kx1?2)(kx2?2)?k2x1x2?2k(x1?x2)?4,∴x1x2?y1y2?(1?k2)x1x2?2k(x1?x2)?4
1216k12(1?k2)2k?16k4(4?k2)?(1?k)??2k?(?)?4???4??0 222221?4k1?4k1?4k1?4k1?4k2∴?
1333?k2?4.② 综①②可知?k2?4,∴k的取值范围是(?2,?)?(,2). 442230.(Ⅰ)证法一:由题设AF2?F,0),F2(c,0),不妨设点A(c,y),其中y?0,由于点A在1F2及F1(?c
18
?b2?c2y2a2?b2y2b2b2(x?c),椭圆上,有2?2?1,解得y?,从而得到A?c,?,直线AF2的方程为y??2?1,22acababa?a?整理得b2x?2acy?b2c?0.
1cb2c222由题设,原点O到直线AF1的距离为OF1,即?,将c?a?b代入原式并化简得
33b4?4a2c2a2?2b2,即a?2b.
?b2?
H,易 证法二:同证法一,得到点A的坐标为?c,?,过点O作OB?AF1,垂足为
a??
知△F1BC∽△F1F2A,故
y H A BOOF1?F2AF1AF1 O
F2 x BO?由椭圆定义得AF1?AF2?2a,又
F2A1a1F2AOFFA?,所以,解得,而??12323F1A2a?F2Ab2b2aF2A?,得?,即a?2b.
aa2(Ⅱ)解法一:圆x?y?t上的任意点M(x0,y0)处的切线方程为x0x?y0y?t2.当t?(0,b)时,圆
222x2?y2?t2上的任意点都在椭圆内,故此圆在点A处的切线必交椭圆于两个不同的点Q1和Q2,因此点
2??x0x?y0y?t ①的解. Q1(x1,y1),Q2(x2,y2)的坐标是方程组?222??x?2y?2b ②?t2?x0x?t?x0x22当y0?0时,由①式得y?代入②式,得x?2???2b,
y0?y0?22222即(2x0?y0)x2?4t2x0x?2t4?2b2y0?0,
24t2x02t4?2b2y0t2?x0x1t2?x1x21422?于是x1?x2?, ?t?xt(x?x)?xx1x2?xx?yy??012012122?2222?y02x0?y02x0?y0y0y14222t4?2b2x04t2x01?4222t?2by0?. ??2?t?x0t?x0222222?2x?yy0?2x0?y02x0?y0?0022222t4?2b2y0t4?2b2x03t4?2b2(x0?y0)若OQ1?OQ2,则x1x2?y1y2????0. 2222222x0?y02x0?y02x0?y04222222所以,3t?2b(x0?y0)?0.由x0得3t?2bt?y0?t,
422?0.在区间(0,b)内此方程的解为t?6b. 3 19
当y0?0时,必有x0?0,同理求得在区间(0,b)内的解为t?66b.另一方面,当t?b时,可推出33x1x2?y1y2?0,从而OQ1?OQ2.综上所述,t?
6b?(0,b)使得所述命题成立. 3p31.(Ⅰ)解:设抛物线的标准方程为y2?2px,则2p?8,从而p?4.因此焦点F(,0)的坐标为(2,0).
2又准线方程的一般式为x??p。从而所求准线l的方程为x??2。 2
(Ⅱ)解法一:如图(21)图作AC⊥l,BD⊥l,垂足为C、D,则由抛物线的定义知|FA|=|FC|,|FB|=|BD|. 记A、B的横坐标分别为xxxz,则|FA|=|AC|=xx?类似地有|FB|?4?|FB|cosa,解得|FB|?ppp4, ?|FA|cosa???|FA|cosa?4解得|FA|?2221?cosa4。
1?cosa记直线m与AB的交点为E,则
|FA|?|FB|11?44?4cosa|FE|?|FA|?|AE|?|FA|??(|FA|?|FB|)??? ??222?1?cosa1?cosa?sin2a44·2sin2a|FE|4(1?cos2a)??8。 所以|FP|?。故|FP|?|FP|cos2a??cosasin2asin2asin2a解法二:设A(xA,yA),B(xB,yB),直线AB的斜率为k?tana,则直线方程为y?k(x?2)。 将此式代入y?8x,得kx?4(k?2)x?4k?0,故xA?xB?22222k(k2?2)k2。记直线m与AB的交点为
xA?xB2(k2?2)441?2k2?4??. ?E(xE,yE),则xE?,yE?k(xE?2)?,故直线m的方程为y????x?22??2kkkkk??令y=0,得P的横坐标xP?2k2?4k2ksina44·2sin2a(1?cos2a)??8为定值。 从而|FP|?|FP|cos2a?sin2asin2a?4故|FP|?xP?2?4(k2?1)2?42。
0),F10,?b2?c2,F20,b2?c2, 32.解:(1)? F0(c,?F0F2??????b237?c2??c2?b?1,F1F2?2b2?c2?1,于是c2?,a2?b2?c2?,所求“果圆”方程为
44424x?y2?1(x≥0),y2?x2?1(x≤0). 73
20
a?c??b2?22y),则|PM|??x?(2)设P(x,??y??1?2c2???2?2(a?c)2?b2,?c≤x≤0, ?x?(a?c)x?4?b2?1?2?0,即当PM取得最小值时,P在点B1,B2? |PM|2的最小值只能在x?0或x??c处取到.
c或A1处.
x2y2(3)?|A1M|?|MA2|,且B1和B2同时位于“果圆”的半椭圆2?2?1(x≥0)和半椭圆
aby2x2x2y2??1(x≤0)上,所以,由(2)知,只需研究P位于“果圆”的半椭圆2?2?1(x≥0)上的情形即可. b2c2abc2?a2(a?c)?(a?c)2a2(a?c)2a?c??222? |PM|??x?. ??y?2?x???b?224a2c4c2????22a(a?c)a(a?c)a2(a?c)2a≤2cPx?当x?,即时,的最小值在时取到,此时的横坐标是. |PM|≤a2c22c22c2a2(a?c)22a?2c?a当x?,即时,由于在时是递减的,的最小值在x?a时取到,此|PM||PM|x?a22c时P的横坐标是a.
22a2(a?c)综上所述,若a≤2c,当|PM|取得最小值时,点P的横坐标是;若a?2c,当|PM|取得最小
2c2值时,点P的横坐标是a或?c.
21
a?c??b2?22y),则|PM|??x?(2)设P(x,??y??1?2c2???2?2(a?c)2?b2,?c≤x≤0, ?x?(a?c)x?4?b2?1?2?0,即当PM取得最小值时,P在点B1,B2? |PM|2的最小值只能在x?0或x??c处取到.
c或A1处.
x2y2(3)?|A1M|?|MA2|,且B1和B2同时位于“果圆”的半椭圆2?2?1(x≥0)和半椭圆
aby2x2x2y2??1(x≤0)上,所以,由(2)知,只需研究P位于“果圆”的半椭圆2?2?1(x≥0)上的情形即可. b2c2abc2?a2(a?c)?(a?c)2a2(a?c)2a?c??222? |PM|??x?. ??y?2?x???b?224a2c4c2????22a(a?c)a(a?c)a2(a?c)2a≤2cPx?当x?,即时,的最小值在时取到,此时的横坐标是. |PM|≤a2c22c22c2a2(a?c)22a?2c?a当x?,即时,由于在时是递减的,的最小值在x?a时取到,此|PM||PM|x?a22c时P的横坐标是a.
22a2(a?c)综上所述,若a≤2c,当|PM|取得最小值时,点P的横坐标是;若a?2c,当|PM|取得最小
2c2值时,点P的横坐标是a或?c.
21
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库2007年高考数学圆锥曲线汇编答案在线全文阅读。
相关推荐: