专题十一 排列组合、二项式定理
1.【2015高考陕西,理4】二项式(x?1)n(n?N?)的展开式中x2的系数为15,则n?( ) A.4 B.5 C.6 D.7 【答案】C
2rr【解析】二项式?x?1?的展开式的通项是?r?1?Cnx,令r?2得x2的系数是C2n,因为x2的系数为15,所以C2n?15,即n?n?30?0,解得:n?6或n??5,因为n???,所
n以n?6,故选C. 【考点定位】二项式定理.
【名师点晴】本题主要考查的是二项式定理,属于容易题.解题时一定要抓住重要条件“n???”,否则很容易出现错误.解本题需要掌握的知识点是二项式定理,即二项式?a?b?kn?kk的展开式的通项是?k?1?Cnab.
n2.【2015高考新课标1,理10】(x?x?y)的展开式中,xy的系数为( )(A)10 (B)20 (C)30 (D)60 【答案】C
2552【解析】在(x?x?y)的5个因式中,2个取因式中x2剩余的3个因式中1个取x,其余因
212式取y,故xy的系数为C5C3C2=30,故选 C.
2552【考点定位】本题主要考查利用排列组合知识计算二项式展开式某一项的系数.
【名师点睛】本题利用排列组合求多项展开式式某一项的系数,试题形式新颖,是中档题,求多项展开式式某一项的系数问题,先分析该项的构成,结合所给多项式,分析如何得到该项,再利用排列组知识求解.
3.【2015高考四川,理6】用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( )
(A)144个 (B)120个 (C)96个 (D)72个 【答案】B 【解析】
33据题意,万位上只能排4、5.若万位上排4,则有2?A4个;若万位上排5,则有3?A4个.所33以共有2?A4?3?A4?5?24?120个.选B.
【考点定位】排列组合.
【名师点睛】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏.在本题中,万位与个位是两个特殊位置,应根据这两个位置的限制条件来进行分类.
4.【2015高考湖北,理3】已知(1?x)n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式 系数和为( )
A.212 【答案】D
B.211 C.210 D.29
37【解析】因为(1?x)n的展开式中第4项与第8项的二项式系数相等,所以Cn,解得?Cnn?10,
所以二项式(1?x)10中奇数项的二项式系数和为【考点定位】二项式系数,二项式系数和.
【名师点睛】二项式定理中应注意区别二项式系数与展开式系数,各二项式系数和:
012nCn?Cn?Cn?????Cn?2n,奇数项的二项式系数和与偶数项的二项式系数和相等024135Cn?Cn??Cn?????Cn?Cn??Cn?????2n?1.
110?2?29. 25、【2015高考广东,理12】某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了 条毕业留言.(用数字作答) 【答案】1560.
【考点定位】排列问题.
【名师点睛】本题主要考查排列问题,属于中档题,解答此题关键在于认清40人两两彼此给对方仅写一条毕业留言是个排列问题.
1??386.【2015高考重庆,理12】?x??的展开式中x的系数是________(用数字作答).
2x??【答案】
55 2k535?k【解析】二项展开式通项为Tk?1?C(x)1kk15?72k7k()?()C5x,令15??8,解得
222x1k15k?2,因此x8的系数为()2C52?.
22【考点定位】二项式定理
【名师点晴】(a?b)的展开式的二项式系数与该项的系数是两个不同的概念,前者只是指
k,它仅是与二项式的幂的指数n及项数有关的组合数,而与a,b的值无关;而后者是指Cnn该项除字母外的部分,即各项的系数不仅与各项的二项式系数有关,而且也与a,b的系数有关.在求二项展开式特定项的系数时要充分注意这个区别.
7.【2015高考广东,理9】在(x?1)4的展开式中,x的系数为 . 【答案】6.
【解析】由题可知Tr?1?Cr4??x4?r??1??C??1?xr4rr4?r2,令
4?r?1解得r?2,所以展22开式中x的系数为C4??1??6,故应填入6.
2【考点定位】二项式定理.
【名师点睛】本题主要考查二项式定理和运算求解能力,属于容易题,解答此题关键在于熟
rn?rr记二项展开式的通项即展开式的第r?1项为:Tr?1?Cnabn?N*且n?2,r?N.
??8.【2015高考四川,理11】在(2x?1)的展开式中,含x2的项的系数是 (用数字作答).
【答案】?40. 【解析】
5(2x?1)5??(1?2x)5,所以x2的系数为?C52?(?2)2??40.
【考点定位】二项式定理.
【名师点睛】涉及二项式定理的题,一般利用其通项公式求解.
1??29.【2015高考天津,理12】在?x? 的展开式中,的系数为 . x?4x??【答案】
615 166rr1?1??1?r6?2r?r6?r?【解析】?x?展开式的通项为由6?2r?2得T?Cx?r?16???????C6x,4x4x4??????15?1?22152x?x,所以该项系数为. r?2,所以T3????C61616?4?【考点定位】二项式定理及二项展开式的通项.
2【名师点睛】本题主要考查二项式定理及二项展开式的通项的应用.应用二项式定理典型式的通项,求出当r?2时的系数,即可求得结果,体现了数学中的方程思想与运算能力相结合的问题.
10.【2015高考安徽,理11】(x3?)7的展开式中x5的系数是 .(用数字填写答案) 【答案】35
r【解析】由题意,二项式(x3?)7展开的通项Tr?1?C7(x3)7?r()r?C7rx21?4r,令
1x1x1x21?4r?5,得r?4,则x5的系数是C74?35.
【考点定位】1.二项式定理的展开式应用.
【名师点睛】常规问题直接利用二项式定理求解,其中通项是核心,运算是保证;比较复杂
的问题要回到最本质的计数原理去解决,而不是一味利用公式.另外,概念不清,涉及幂的运算出现错误,或者不能从最本质的计数原理出发解决问题,盲目套用公式都是考试中常犯的错误.
11.【2015高考福建,理11】?x?2? 的展开式中,x2的系数等于 .(用数字
作答) 【答案】80
232【解析】?x?2? 的展开式中x2项为C52x?80,所以x2的系数等于80.
55【考点定位】二项式定理.
【名师点睛】本题考查二项式定理的特定项问题,往往是根据二项展开式的通项和所求项的联系解题,属于基础题,注意运算的准确度.
12.【2015高考北京,理9】在?2?x?的展开式中,x3的系数为 【答案】40
5.(用数字作答)
【考点定位】本题考点为二项式定理,利用通项公式,求指定项的系数.
【名师点睛】本题考查二项式定理,利用通项公式求出指定项的系数,本题属于基础题,要求正确使用通项公式Tr?1?Cnran?rbr,准确计算指定项的系数.
13.【2015高考新课标2,理15】(a?x)(1?x)的展开式中x的奇数次幂项的系数之和为32,则a?__________.
4【答案】3
【解析】由已知得(1?x)?1?4x?6x?4x?x,故(a?x)(1?x)的展开式中x的奇数次幂项分别为4ax,4ax3,x,6x3,x5,其系数之和为4a?4a?1+6+1=32,解得a?3. 【考点定位】二项式定理.
【名师点睛】本题考查二项式定理,准确写出二项展开式,能正确求出奇数次幂项以及相应的系数和,从而列方程求参数值,属于中档题.
3a??2【2015高考湖南,理6】已知?x? ?的展开式中含x的项的系数为30,则a?( )
x??423445A.3 B.?3 C.6 D-6 【答案】D. 【解析】
试题分析:Tr?1?C(?1)ax【考点定位】二项式定理.
【名师点睛】本题主要考查了二项式定理的运用,属于容易题,只要掌握(a?b)的二项展开
式的通项第
rn?rrab,即可建立关于a的方程,从而求解. r?1项为Tr?1?Cn10r5rr5?r2,令r?1,可得?5a?30?a??6,故选D.
n1??【2015高考上海,理11】在?1?x?2015?的展开式中,x2项的系数为 (结果用
x??数值表示). 【答案】45
1?1?1??1【解析】因为?1?x?2015???(1?x)?2015??(1?x)10?C10(1?x)92015?x?x?x??10828x2项只能在(1?x)展开式中,即为C10x,系数为C10?45.
1010,所以
【考点定位】二项展开式
【名师点睛】(1)求二项展开式中的指定项,一般是利用通项公式进行化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数r+1,代回通项公式即可.(2)对于三项式问题一般先变形化为二项式再解决.
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库2015高考数学真题分类汇编专题11 排列组合、二项式定理在线全文阅读。
相关推荐: