上海七年级第二学期期末压轴题复习
1、如图,在平面直角坐标系中,∠ABO=2∠BAO,P为x轴正半轴上一动点,BC平分∠ABP,PC平分∠APF,OD平分∠POE。 (1)求∠BAO的度数; (2)求证:∠C=15?01?OAP; 2(3)P在运动中,∠C+∠D的值是否发生变化,若发生变化,说明理由,若不变,求出其值。
2、如图,在平面直角坐标系中,△ABC是直角三角形,∠AOB=90°,斜边AB与y轴交于点C。
(1)若∠A=∠AOC,求证:∠B=∠BOC;
(2)延长AB交x轴于点E,过O作OD⊥AB,且∠DOB=∠EOB,∠OAE=∠OEA,求∠A的度数;
(3)如图,OF平分∠AOM,∠BCO的平分线交FO的延长线于点P,当△AOB绕O点旋转时(斜边AB与y轴正半轴始终交于点C),在(2)的条件下,试问∠P的度数是否发生变化?若不变,请求出其度数;若改变,请说明理由。
3、如图,已知∠MON=90°,点A、B分别在射线OM、ON上,∠OAB的内角平分线与∠OBA的外角平分线所在直线交于点C。 (1)试说明∠C与∠O的关系;
(2)当点A、B分别在射线OM、ON上移动时,试问∠C的大小是否发生变化,若保持不变,求出∠C的大小;若发生变化,求出其变化范围。
4、如图,△ABC中,∠A=60°,BP1、BP1、CP2三等分∠ABC,CP2三等分∠ACB。 (1)如图1,求?BP1C的度数;
(2)如图2,连接P1P2,求?BP2P1的度数;
(3)如图3,若BP1、BP1、CP2、……BP2、……CPn?1等分∠ACB,n?1等分∠ABC,CP则?BPn?1C=_____(用含n的式子表示)
5、如图,将边长为1的正三角形OAP沿x轴正方向连续翻转2014次,点P依次落在点
P,P2,P13,...,P2014的位置,则点P2014的横坐标为?
y P A
O P1 x
如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.
(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC
(2)在y轴上是否存在一点P,连接PA,PB,使S?PAB=S四边形ABDC, 若存在这样一点,求出点P的坐标,若不存在,试说明理由.
(3)点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合)给出下列结论:①
?DCP??BOP?DCP??CPO的值不变,②的值不变,其中有且只
?CPO?BOP有一个是正确的,请你找出这个结论并求其值.
y yyCDPABOxCD CDA-1O3Bx
A-1O3Bx
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库沪教版七年级数学第二学期期末压轴题复习在线全文阅读。
相关推荐: