20.某学校开展以素质提升为主题的研学活动,推出了以下四个项目供学生选择:A模拟驾驶;B..军事竞技;;C. 家乡导游;D.植物识别。学校规定:每个学生都必须报名且只能选择其中一个项目。八年级(3)班班主任刘老师对全班学生选择的项目情况进行了统计,并绘制了如下两幅不完整的统计图。请结合统计图中的信息,解决下列问题: (1)八年级(3)班学生总人数是 ,并将条形统计图补充完整;
(2)刘老师发现报名参加“植物识别”的学生中恰好有两名男生,现准备从这些学生中任意挑选两名担任活动记录员,请用列表或画树状图的方法,求恰好选中1名男生和1名女生担任活动记录员的概率。
4
四、解答题:(本大题5个小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上。
4a?1?a2?8a?16? 。 21.计算: ?1? ?x?2y???x?y??x?y? ;?2? ?a?1???a?1?a?1?2
22.如图,在平面直角坐标系中,直线l1:y?1x与直线l2交点A的横坐标为2,将直线l1沿2y轴向下平移4个单位长度,得到直线l3 ,直线l3与y轴交于点B,与直线l2交于点C,点C的纵坐标为-2,直线l2与y轴交于点D。 (1)求直线l2的解析式; (2)求△BDC的面积。
23.在美丽乡村建设中,某县政府投入专项资金,用于乡村沼气池和垃圾集中处理点建设,该县政府计划:2018年前5个月,新建沼气池和垃圾集中处理点共计50个,且沼气池的个数不低于垃圾集中处理点个数的4倍。
(1)按计划,2018年前5个月至少要修建多少个沼气池?
(2)到2018年5月底,该县按原计划刚好完成了任务,共花费资金78万元,且修建的沼气池个数恰好是原计划的最小值,据核算,前5个月,修建每个沼气池与垃圾集中处理点的平均费用之比为1:2,为加大美丽乡村建设的力度,政府计划加大投入,今年后7个月,在前5个月花费资金的基础上增加投人10a% ,全部用于沼气池和垃圾集中处理点建设,经测算:从今年6月起,修建每个沼气池和垃圾集中处理点的平均费用在2018年前5个月的基础上分别增加a% ,5a%,新建沼气池和垃圾集中处理点的个数将会在2018年前5个月的基础上分别增加5a% ,8a%.求a的值。
5
24.如图,在平行四边形ABCD中,∠ACB=45°,点E在对角线AC上,BE=BA.BF⊥AC于点F,BF的延长线交AD于点G.点H在BC的延长线上,且CH=AG, 连接EH. (1)若BC?122,AB=13,求AF的长; (2)求证:EB=EH.
25. 对任意一个四位数n,如果千位与十位上的数字之和为9.百位与个位上的数字之和也为9.则称n为“极数”。
(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由; (2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D?m??
m。求满足D?m?是完全平方数的所有m。 33 6
五,解答题:(本大题1个小题,共12分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线) ,请将解答过程书写在答题卡中对应的位置上。 26.抛物线y??6223x?x?6与x轴交于点A,B(点A在点B的左边),与y轴交63于点C,点D是该抛物线的顶点。
(1)如图1,连接CD.求线段CD的长;
(2)如图2,点P是直线AC上方抛物线上一点,PF⊥x轴于点F,PF与线段AC交于点E;将线段OB沿x轴左右平移,线段OB的对应线段是O1B1,当PE?形PO1B1C周长的最小值,并求出对应的点O1的坐标;
(3)如图3,点H是线段AB的中点,连接CH.将△OBC沿直线CH翻折至?O2B2C的位置,再
1EC的值最大时,求四边2C1.直线O3C1将?O2B2C绕点B2旋转一周,在旋转过程中,点O2,C的对应点分别是点O3,
分别与直线AC,x轴交于点M,N.那么,在?O2B2C的整个旋转过程中,是否存在恰当的位置,使△AMN是以MN为腰的等腰三角形?若存在,请直接写出所有符合条件的线段O2M的长;若不存在,请说明理由。
7
8
9
10
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说中考初中2018年重庆市中考数学试卷(B,含答案)(2)在线全文阅读。
相关推荐: