77范文网 - 专业文章范例文档资料分享平台

离散数学第3-6章习题(中加)

来源:网络收集 时间:2020-06-21 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

《离散数学》习题

第3章

1.Let Z be the set of all integers,and f:N?{0,1},f(i)???1 i为奇数 ?0 i为偶数,then f( ).

(A).is a injection and not a surjection; (B).is a surjection and not a injection;

(C).is neither a injection nor a surjection; (D).is a bijection.

2.Let R be the set of all real numbers,andf:R?R,f(x)?2x,thenf( ).

(A).is a injection and not a surjection; (B).is a surjection and not a injection;

(C).is neither a injection nor a surjection; (D).is a bijection.

3.Letf,g,h are relations on setA. Which of the following propositions is ture?( ).

(A). f?g?g?f ; (B).f?f?f; (C).f?(g?h)?(f?g)?h; (D).f?g?h.

4.If f be a bijection fromA toB,then ff?1?1 is a bijection from ,and

?f= ,f?f?1= .

5.Let A?{a,b,c},then the number of bijections from A to A is .

6.Let X?{a,b,c,d}, Y?{1,2,3,4}. Which of the following relations from X to Y are or are not functions? Find Rf for functions.

f1={a,1,b,3,c,4,d,2f2},

={a,4,b,4,c,4,d,4},

},

f3={a,3,b,4,c,3,d,4f4={a,4,b,4,c,1,d,4},

}

f5={a,1,b,3,c,4,d,2,a,2f6={a,1,b,3,c,4}

7.Let A?{a,b,c},B?{1,2},C?{?,?},

f:A?B,f?{a,1,b,2,c,2},g:B?C,g?{1,?,2,?},

find g?f:A?C.

第 1 页 共 7 页

8.Let R? be the set of all positive real numbers and R be the set of all real numbers,f:

R???R,?x?R,f(x)?lnx. Show that f is a bijection.

9.Let Rbe the set of all real numbers,a,b?R,a?b,f:[a,b]?[0,1], f(x)??x?[a,b].

x?ab?a,

Show thatf is a bijection and find f?1.

第4章

1.Let G,? is a group with identity 1,where G?{1,a,b},then b2= , a3= .

2.Suppose G,? is a group,then for all a,b∈G, (a?b)?1 = .

3.In algebraic systemZ,?(Zis the set of all integers and “+” is the general addition),the identity for Z with respect to the operation “+” is ,the zero element for Zwith respect to the operation “+” is ,for any x∈Z,x?1= . 4.Let A?{a,b,c}and for

P(A)

P(A)

be the power set of A.In algebraic system?P(A),?,??,the identity

P(A)

with respect to the operation “?” is ,the zero element for

P(A)

with respect to

the operation “?” is ,the identity for zero element for

P(A)

with respect to the operation “?” is ,the

with respect to the operation “?” is .

5.Which of the following algebraic systems ?G,?? is not a group( ).

(A).G={1,10},? is defined by m?n=mn (mod 11);(B).G={1,3,4,5,9}, ? is the same as A; (C).G?Q,? is the general multiplication; (D).G?Q,? is the general addition. 6.Let ? be a binary algebraic operation(二元代数运算) on setA. ??A,? is called a zero element forAunder “?” if( ).

(A).for all x?A,such that ??x?x???x. (B).for all x?A,such that ??x?x????.

(C).there is an element x?A,such that ??x?x???x. (D).there is an element x?A,such that ??x?x????. 7.Let ? be a binary algebraic operation(二元代数运算) on setA. e?A,e is called an identity (element) forAunder “?” if( ).

(A).for all x?A,such that e?x?x?e?x. (B).for all x?A,such that e?x?x?e?e.

(C).there is an element x?A,such that e?x?x?e?x. (D).there is an element x?A,such that e?x?x?e?e.

8.Let Q be the set of all rational numbers. We define operation “?” by

第 2 页 共 7 页

?a,b?Q,a?b?a?b?2ab .

(1).Find 3?(?5);

(2)Find the identity for Q with respect to the operation ?; (3).Does ain Q have an inverse? If yes , please find a?1.

9.Fill the following blanks with proper elements so that {a,b,c},* becomes a group.

? a b c a ab a c c c

10.LetA?{a,b,c,d}, A,? be an Abelian group and abe the identity of A,?.The binary operation “?” defined by

? a b c d aa b c d b b a x1 x2cc x4 a x3 d x5 x6 ad Find x1,x2,x3,x4,x5,x6.

11.Let G,? is a monoid with identity e ,and ?a?G,a?a?e,then G,? is an Abelian group.

12.Let S?{a,b,c,d}, f:S?S be a bijection , f(a)?b,f(b)?c,f(c)?d,f(d)?a,and

F?{f,f,f,f}.

0123Show thatF,?is an Abelian group.

第5章

1.〈A,≤〉be a poset,if any two elements in A have ,then

〈A,≤〉is called a lattice, and ?a,b?A,a?b if and only if a?b? .

2.Let A,?,?,,0,1 be a Boolean algebra,then there are deferent functions from

nA to A; the identity for A with respect to the operation “?” is ,the zero element

第 3 页 共 7 页

for A with respect to the operation “?” is ,the identity for A with respect to the operation “?” is ,the zero element for A with respect to the operation “?” is .

3.Let A,?,?,,0,1 be a Boolean algebra.For all a,b?A,(a?b)?____ __. 4.Which of the following Hasse diagrams is not a lattice? ( ).

5.Which of the following poset is bounded lattice? ( )

(A).?N,??; (B).??2,3,4,6,12?,/?,where “/” is the relation of exact division; (C).?Z,??; (D).?P(A),??;where A?{a,b,c},P(A) is the power set of A. 6.Which of the following Hasse diagrams is not a distributive lattice? ( ).

7.Which of the following Hasse diagrams is a distributive lattice?( )

8.Which of the following Hasse diagrams is a distributive lattice? ( ).

第 4 页 共 7 页

9.Let L,?be a lattice defined by the following Diagram. Find complements (if there exist) for

every element of L.

Solution: element complements 0 1 a b c d e 10.Let L,?be a lattice defined by the following Diagram. Find complements (if there exist) for every element of L.

Solution: element a b c d e (1分) c,d(2分) b(1分) b(1分) a(1分) complements e

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库离散数学第3-6章习题(中加)在线全文阅读。

离散数学第3-6章习题(中加).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/jiaoyu/1115189.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: